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ABSTRACT

Four BLDT flights were conducted during the summer of 1972 over tlle

White Sands Missile Range. The purpose of these tests was to qualify the

Viking DGB parachute system behind a full-scale simulator of the Viking

Entry Vehicle over the maximum range of entry conditions anticipated in

the Viking '75 soft landing on Mars. Test concerns centered on tile

ability of a minimum weight parachute system to operate without structural

damage in the turbulent wake of the blunt-body entry vehicle (140 ° cone

it.5' diameter). This is the first known instance of successful parachute

operation at supersonic speeds in the wake of such a large blunt body. 1no

flight tests utilized the largest successful balloon-payload weight

combination known to get to high altitudes in the earth's atmosphere where

rocket engines were employed to boost the test vehicle to supersonic speeds

and dynamic pressures simulating the range of conditions on Mars.

This report presents the results of the third test, a repeat of the

first, in the series where the test conditions at parachute deployment

were the most severe expected at Mars; Mach number of approximately 2.0

and dynamic pressure of approximately i0.0 psf. The report also contains

appendices describing the test vehicle, parachute postflight inspection

report, parachute dimensional description, and description, s of the BLDT

mission and computer software. Tne parachutes ustained no flight damage.

Detailed parachute performance data obtained from tensiometers, cameras,

accelerometers, and radar are presented and analyzed. Aeroshell separation

dynamics and vehicle motions as influenced by the parachute opening process

and performance obtained from the above instruments and rate gyros are also

presented and analyzed.
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I-I

I. PURPOSE OF REPORT

The purpose of this report is _o document the pertinent event:_ con-

cerned with the launch, float and flight of Balloon Launched Decelerator

Test Vehicle AV-4 and the performance of the Decelerator System installed

therein. The report will describe and rovide data pertinent to the flight

trajectory and decelerator test points at the time of decelerator deploy-

ment as well as a description of the t_me history of vehicle events and

anomalies encountered during the mission.

The final test reports for BLDT Vehicles AV-I, AV-2 and AV-3 are con-

tained in the following MMC documents:

AV-I - Document number TR-3720289

AV-2 - Document _lumber TR-3720291

AV-3 - Document number TR-3720293
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II. MISSION OBJECTIVES

The mission objective for the BLDT program is to subject the Viking

Decelerator System to qualification test requirements at simulated Mars

entry conditions and in the wake of a full scale blunt body which simula-

tes the Viking Lander Capsule. The program test requirements provide for

parachute qualification at simulated Mars atmospheric conditions which are

consistent with parachute deployment at supersonic, transonic and subsonic

conditions.

The flight of Vehicle AV-4 provide for deployment of the decelerator

under the simulated Mars atmospheric conditions equivalent to a supersonic

case. The Mach number and dynamic pressure resulting from this simulated

entry condition is shown on Figure II-I. The total vehicle requirements

described in Paragraph 3.3 of "Parachute Test Objectives and Requirements

Document for BLDT Program" (RD-3720247) are:

Angle of Attack at Mortar Fire <17 °

Residual Spin Rste <__100°/second

Parachute Temperature at Mortar Fire <__80°F

Simulated Mach Number/"q" conditions See Figure II-I

It is noted that the flight of vehicle AV-4 was required due to the

fact that vehicle AV-I, Case I supersonic test (see Appendix B) was declar :

a decelerator qualification "no test". The no test resulted from the im-

position of overtest dynamic pressure conditions at decelerator mortar

fire and at peak load with subsequent damage to the parachute, (see BLDT

Vehicle AV-I Posr-Fllght Test Report - TR-3720289).
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In order to provide the velocity/atmospheric density equivalent to a

supersonic Mars entry, the BLDT _ehicle was lifted to high atitude (120,000

feet) beneath a balloon system. Once at the correct altitllde and over the

White Sands Missile Range, the flight vehicle was released from the balloon

load _ar and under control of airborne programming, the vehicle was boo, ted

by soli_ rocket motors to the altitude _density)/veloclty equivalent of the

supersonic test condition.

It was also a goal of this mission to separate the vehicle aeroshell

followiQg decelerator deployment in order to obtain a time (distance his-

tory of the separation fuE,ction).

A description of the BLDT vehicle, which served as the qualification

test bed, is included in Appendix A of this report. A description of the

BLDT mission is provided in Appendix B.
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III. DECELERATOR QUALIFICATION SUMMARY

The following is a sununary of program events, pertinent to the decelera-

tor system, occurring from the time of decelerator system installation in the

BLDT vehicle through the recovery of the decelerator system at the point of

payload impact.

A. Operations Sumnary

The decelerator system was installed in the base cover of vehicle AV-4

prior to final vehicte assembly for Flight Readiness Test. The system was

Martin Marietta Corporation Serial Number 0000075 (GAC System S/N 16) with a

system weight of 127.08# and an ejected pack weight of 90.i#.

During vehicle stand time while awaiting satisfactory meteorological

conditions for launch, conditioned air was applied to the vehicle in order

to maintain the vehicle interior, including the decelerator cannister, at a

temperature below 80°F.

The decelerator system was subject to cooling during the ascent and

float phases of the mission with pertinent decelerator temperatures just

prior to release from the load bar as follows:

Sensor Location Spec. Req'd (OF) Actual Temp _°F)

*Bridle #I +210 to -90 +34

*Bridle #2 +210 to -90 +35

*Bridle #3 +210 to -90 +37

Mortar Cannister #I +80 (No Min) +44

Mortar Cannister #2 +80 (No Min) +46

Mortar Breach +75 tu +25 +49 (Automatic heater

controlled)

Mortar Breach Flange +75 to +25 +48

*Temperature measured on the base cover inter/or beneath t'e bridle

leg.
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B. Vehicle Performance

The AV-4 vehicle performed normally and all anticipated functions occurred.

Mortar fire was commanded from the ground at the proper flight conditions for

the decelerator test. The mortar fire conditions were:

TARGET ACTUAL

Mach Number 2.17 2.126

Dynamic Pressure (PSF) 10.84 10.9

Residual Spin Rate (Deg/Sec) +I00 -30

Total Angle of Attack (Deg) <17 5.2

There was no vehicle induced damage to the decelerator system.

During the flight of AV-4, it was anticipated that the solid rocket

motors would create a heating condition on the base cover and bridle legs

requiring thermal control. The base cover and bridle legs were protected

with passive thermal control materials similar to vehicle AV-I. The

recovered base cover of AV-4 provid,_d no evidence of base heating which

would have been detrimental to the bridle legs.

C. Decelerator System Summary

Mortar fire conditions were within the desired limits to produce opening

load conditions that fell within the test objective Mach number and dynamic

pressure envelope of Figure II-I. Mortar velocity of 114.2 fps was slightly

higher than nominal but within the expected tolerance. Bag strip and infla-

tion were normal with little unsymmetrical loading in evidence.

The maximum parachute opening load of _6,196 pounds occurred shortly

after first full inflation. After a short period of area oscillations,

the canopy reached stable Inflation and showed good stability for the remainder

of flight. No major damage was sustained by the parachute. Several black
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smudges and small holes in the canopy appear to have resulted from exhaust

residue from either the mortar or the BLDT propulsion units.

Parachute drag exceeded expectations in the _upersonic regime and was

near nominal below Mach 0.6. There was evidence of a drag reduction near

Mach 1.0 as predicted by wind tunnel testing.

The parachute opening transient induced vehicle attitude rates as high

as iii degrees/second initially, which damped to less than 50 degrees/second

in i0 seconds. The damping characteristics of the parachute, however, are

not as good as expected.

Aeroshell separation was successfully demonstrated at a dynamic pres-

sure of 3.18 psf and a Mach number of 1.18. The separation distance of 206

feet in 3 seconds more than adequately fulfills the minimum system require-

ment of 50 feet in 3 seconds.
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IV MISSION OPERATIONS

The following is a description of the program events occurring from

the time of vehicle AV-4 Flight Readiness Test through Recovery Operations.

A. Fli_ht Readiness Test and Launch

BLDT Vehicle AV-4 completed Flight Readiness Test on August 3, 1972

with data review being completed on August 4, 1972. The airborne battery

activation was completed on August 3, and installed prior to FRT.

A launch attempt was initiated on the evening of August 7 for a launch

on August 8. This launch attempt was aborted due to thunderstorms in the

Roswell launch area. Due to lack of range availability, no launch attempts

were scheduled until the evening of August 12, at which time a launch opera-

tion was initiated for a launch on August 13. This launch attempt resulted

in the launch of vehicle AV-4 at 1340 hours Z on August 13.

Balloon winch up and system launch were smooth and without incident

with launch winds (surface to i000 ft.) of approximately 4 to 6 mph.

During the prelaunch vehicle checkout, there were no BLDT system

anomalies.

B. Alcent and Float

The balloon ground track during ascent and float was as shown in

Figure IV-I. The float track to range, rauge intersect point, float head-

_ng at range intersect and range intersect time were in general agreement

with the preflight predictions for these parameters.
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Figure IV-2 presents the ascent profile of altitude versus time of day.

It can be seen teat the preflight predicted profile of I000 feet/minute _Jas

not maintained with the result that float altitude was reached 24 minutes

prior to vehicle release from the load bar rather than a possible 47 minutes.

Unlike vehicle AV-I, where the porpoising motion continued into the

vehicle drop time phase, Vehicle AV-4 float altitude was nearly stable at

the time of vehicle drop. Figure IV-3 presents an expanded view of the

float motions for the final 29 minutes prior to vehicle release from the

load bar.

During the ascent phase, the vehicle was acquired by range telemetry

stations at approximately 13:52 hours Z and a balloon altitude of approxi-

mately 13 K feet. The vehicle command system was captured at approximately

14:01 hours Z at an altitude of 18.6 K feet. At approximately 14:09 hours

Z (27 K feet), a vehicle command system check was performed by transmitting

commands which did not change vehicle status (i.e., safe, safe backup) and

verifying receipt of the commands at the vehicle via the vehicle to ground

TM link.

Vehicle azimuth pointing operations during the float phase just prior

to vehicle drop are covered in Section VI - Vehicle Performance Analysis.

During the ascent phase, at approximately 15:29 hours Z (97 K feet)

azimuth point ground commands were transmitted to operate the airborne

azimuth pointing system. Receipt of the commands and response of the

vehicle was verified by TM data which provided a revised azimuth

turning rate at the control center plot boards.

The azimuth pointing system installation and operation was required as

a range safety constraint in order to assure that the vehicle azimuth at

drop would maximize the probsbility of vehicle impact on range in the event

of a complete failure of the decelerator system.
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C. Vehicle Flight

All airborne and ground functions occurred as planned during the vehi-

cle flight portion of the mission. The real time mortar fire command was

issued by the WSMR ground computer based on radar tracking and T-24 hour

meteorological data. The computer software used is described in Appendix

E. The real time computed dynamic pressure is compared to the actual (T-I

hour meteorologica] data and reconstructed post flight trajectory) and

also to the reference dynamic pressure (software reference) in Figure IV-4.

The difference in the real time computed and reference dynamic pressure

was used to predict the time when the desired dynamic pressure (10.84 PSF)

would be obtained. When the real time prediction matched this value, the

computer fired the mortar through the command system. The variation in

this predicted mortar fire time just prior to mortar fire is also shown

in Figure IV-4. The low noise level in the computer dynamic pressure allowed

mortar fire to occur at a predicted dynamic pressure 2% above the target,

at an overload of 1.26. The programmed sequence of flight events and actual

event times for the vehicle flight are provided in Table IV-I. Table IV-2

contains a summary of predicted and actual flight parameters.

During this phase of the mission, the decelerator was deployed as

planned. The analysis of the decelerator performance is provided in

Section V.

It was a requirement during this phase of the mission to separate the

aeroshell from the BLDT test bed in order to obtain a separation time-dis-

tance history. The analysis of the flight film, covered in Section V of

this report, reveals that the actual separation rate exceeded the minimum

requirement of 50 feet in 3 seconds.
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Inspection of the recovered vehicle indicated

i, All ordnance functions occurred with no damage to the vehicle due

to separation processes or vehicle ordnance functions.

2. Base recirculation of SRM exhaust products during the boost phase

was minimal since there was no evidence of high temperature effect

on the base cover ablator.

D. Recovery Operations

The vehicle flight path was such that the payload impacted approxi-

mately 23 miles southwest of the vehicle drop poirt. (See Figure IV-l). The

paint of impact in the range was in sandy terrain and close to a major

range road which minimized vehicle impact damage and provided easy access

for recovering the expended vehicle and decelerator. _i[ recovery opera-

tions were completed on the launch day.

Discussion of the condition of the recovered hardware is covered in

later appropriate paragraphs.
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TABLE IV-2

SUMMARY OF FLIGHT PARAMETERS _-_

PREDICTED ACTUAL

A. Drop Time, GMT -- 16:24:30.75

B. Drop Conditions

I. Longitude (DEG) -- 106.232

2. Latitude (DEG) -- 23.287

3. Altitude, Geometric (FT) 121,200 120,543 -
4. Drop Azimuth (DEG) -- 222.8

C. Spin/Despin

I. Spln-up Rate (DEG/SEC) 194 203

2. Spin Rate at Despln (DEG/SEC) 140 110
3. Residual Spin Rate (DEG/SEC) 9 -30

D. Maximum Flight Conditions

i. Maximum Q/V

a. Time from Drop (SECt 28.0 26.9
b. Max. Q (PSF) 22.1 24.8

c. Velocity (FPS) 2710 2844

2. Maximum Acceleration

a. Time from Drop (SEC) 14.0 14.0

b. Max. Longitudinal Acceleration (g's) 4.52 4.77

E. Mortar Fire Conditions

I. Math Number 2.178 2.126

2. Dynamic Pressure (PSF) 10.84 10.9
3. Velocity (FPS) 2324 2290
4. Axial Acceleration (g's) -0.94 -0.92

5. Altitude (FEET> 143,625 147,186

6. Angle of Attack (DEG) -9.0 -4.1
7. Angle of Yaw (DEG) 0.0 -3.1

F. Aeroshell Separation Conditions

I. Math Number 1.10 1.18

2. Dynamic Pressure (PSF) 2.43 3.18
3. Time for 1 Foot (SECt 0.18 0.16
4. Time for 50 Feet (SECt 3.0 1.40
5. Distance at 3 seconds (FEET) 50.0 206

k
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V. DECELERATOR SYSTEM ANALYSIS

A. System Description

Testing of the Viking decelerator system is the primary objective of

this flight test. The Viking decelerator is a 53-foot nominal diameter Disk-

Gap-Band (DGB) parachute with dimensions and general arrangement shown in

Figure V-I. The parachute is fabricated entirely from Dacron type 52 except

for the three-legged bridle which uses a special Goodyear proprietary fiber.

The band cloth material is a 1.53 oz/sq, yd. rip-stop material having a

minimum specified strength of 60 Ibs/in. The disk cloth Is a 2.12 oz/sq.

yd. rlp-stop material having a minimum specified strength of 90 Ibsfln.

The minimum strengths of the radial tapes, circumferential tapes and suspen-

sion lines are 900 pounds, 900 pounds and 880 pounds respectively.

The parachute is packed in a deployment bag to a density of 43 Ibs/ft3

and stored in a mortar can aboard the BLDT vehicle in much the same manner

as the Viking system. The BLDT vehicle itself is practically identical in

shape and size to the Viking Lander Capsule. At mortar fire, the deployment

bag is ejected straight back by a mortar whose reaction force is nominally

oriented through the vehicle c.g. A breakdown of the ejected weight is seen

in Figure V-2 to total 97 ibs. The relative velocity imparted to the deploy-

ment bag is expected from ground mortar test experience to be 112 _ 3 FPS.

Additional geometric data on the parachute are tabulated in Table V-I.

B. Mortar Fire Conditions

At mortar flee, the vehicle had a residual roll rate of -30 degrees per

second and was coning about the velocity vector with a 5-6 degree angle.

Plots of angle of attack and sideslip in Figure VI-20, Section VI, show

t
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the mortar fire values to be -4.1 and -3.1 degrees respectively. Obser-

vation of the mortar smoke puff in the airborne film data 0.2 seconds after

mortar fire shows an angle of attack of -5.5 degrees with sideslip anB1e

near zero. The vehicle was therefore very near aerodynamic trim but was

moving away from the trim at 14 deg/sec as indicated in Figure VI-19,

Section VI.

A summary of the important mortar fire conditions compared with expected

nominal values are tabulated below:

MORTAR FIRE CONDITIONS NOMINAL FLIGHT

Mach Number 2.178 2.126

Dynamic Pressure, psf 10.84 10.90

Velocity, fps 2324 2290

Axial Acceleration, g's .94 .93

Altitude, ft 143625 147186

Angle of Attack -8.4 -4.1

Angle of Sideslip 0 -3.1

Total Angle of Attack 8.4 5.2

Parachute Temperature 80°F 46°F

The mortar fire conditions for this flight produced dynamic pressure

and Mach number at flr6t peak load which fell within the desired envelope

of test conditions as shown in Section II, Figure II-I.

C. Mortar Performance

The mortar performance is evaluated by observing the bag stripping

process from the on-board camera. The time at which the canopy first starts

emerging from the bag can be clearly seen to be .985 seconds from mortar fire.

The actual distance the deployment bag must travel for the suspension lines

to be pulled from the bag is defined by the length of the lines themselves.

By simulating the morta_ firing process with complete aerodynamic forces on

the forebody and the deployment bag_ the mortar veloclty can be establlshed.
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The AV-4 flight conditions of Mach number, dynamic pressure and flight path

angle at mortar fire are used. Assumptions were used as follows where flight

data are not available:

I. Deployment bag CDS = 1.6

2. Dynamic pressure gradient behind blunt bc_y (Reference 3)

3. Forebody aerodynamic coefficients (Reference 4)

4. Line and canopy stripping forces of 2 and 6 ibs. respectively

(Reference 5).

Past experience, most notably on the flight of AV-I (TR-3720289) has

shown that suspension lines do not follow a straight line between forebody

and the deployment bag but are bowed as a result of aerodynamic force on the

lines in proportion to the angle of attack and dynamic pressure existing at

mortar fire. This characteristic has to be considered in the simulation for

estimating mortar velocity. On the flight of AV-4, however, the angle of

atL..... ¢ mortar fire is relatively low (5.2 degrees compared with 13 on AV-I).

The extent of llne bowing can be seen in the deployment picture sequence in

Figure V-3 to be very minor especially _n the final stages of bag strip. In

fact, the lateral motion of the swivel sets up travel_ng waves on the suspen-

sion lines which mask out the small llne bowing effect due to angle of attack.

One of these waves may be seen nearing the bag in Figure V-3 at t - .546.

The suspension llne alignment to the relative wind is therefore very erratic

as seen in Figure V-4.

The net result of the foregoing discussion is that the dlffererce between

assuming straight lines or bowed lines on the distance between bodies at llne

stretch is small and amounts to less than i FPS on the estimated mortar velo-

city. A small amount of llne bowing commensurate with the small angle of

attack at mortar fire was used in estimating the morta, velocity to be 114.2

FPS. This is near the high side of the expected tolerance on this variable.
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Simulation of the bag stripping Drocess using a mortar velocity of

114.2 FPS resulted in the following sequence:

TIME-SECONDS

SIMULATION/ACTUAL RELATIVE VELOCITY-FPS

Mortar Fire 0 0 114.2

Line Stretch .99 .985 86.4

Lowest _V 1.23 79.6

Bag Strip 1.30 1.233 83.6

The relative velocity at bag strip is seen to be more than adequate to assure

positive bag strip. The difference between the simulated and actual time to

bag strip is not unusual. The actual instant of bag strip from film data is

difficult to obtain because the event is obscurre_ by the inflating canopy.

The inflation of the canopy material already out of the bag also shortens

the distance the bag must travel before complete stripout occurs. This effect,

if simulated, would reduce the slmulated time to bag strip.

D. Decelerator Inflation Sequence

The on-board Milliken and Photosonic camera films were examined in

detail to establish event times and to document the character of the para-

chute inflation. In the sequence shown below, certain events such as first

peak load and aeroshell separation were obtained from telemetry data: Good

correlation of all three sources of data was achipved;

SEQUENCE OF EVENTS TIME-SECONDS

Mortar Fire 0

Line Stretch .985

Bag Strip 1.233

Bag Behind Canopy 1.265

First Full Open 1.545

First Peak Load 1.570

Aeroshell Separation 7.650
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Selected frames from the Milliken aft viewing camera show in Figure

V-3 some of the significant events during and shortly after the inflation

phase. The growth of the canopy from line stretch was obtained by tracing

the projected area images from the Milliken camera and integrating these

images with a planimeter. A canopy growth parameter curve of normalized

area versus time is then constructed in Figure V-5. The projected area

at any time is divided by the projected area observed in the final seconds

of film coverage. The time scale is normalized by the total filling time.

Although the cur,:e of Figure V-5 is fairly typical _or a DGB parachute, it

is seen to be considerably different than that experienced on the AV-I dam-

aged canopy inflation. On AV-4, bag strip is complete before any appreci-

able inflation has taken place. Once inflation begins, the growth rate is

very rapid with very little round-off at the peak value.

A plot of the projected area ratio, Sp/Spfinal , versus time from line

stretch is presented in Figure V-6. Two features of this curve deserve

mention. First, the initial peak area exceeds the final steady state value,

SPfinal , by about 12 percent. This would normally be interpreted as an

indication of high canopy loading. Secondly, there are two significant

dips in the area time-history at Mach numbers of 1.90 and 1.66. Past

experie_ice with the DGB parachute (Reference 6) has shown a tendency towards

unstable canopy inflation above Mach 1.4. The second dip experienced on

AV-4 is larger than experience would predict and occurs after a period of

relatively stable inflation. An examination of the aft viewing camera data

reveals that the parachute appears to move across the forebody wake at 1.0

and 3 seconds after llne stretch. These times suggest a possible cause and

effect relationship between inflation stability and wake interference. This
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is considered a transient situation which becomes less significant at

lower Mach numbers.

No correction has been applied to the projected area ratio in Figure

V-6 to correct for variation in the canopy image plane under changing load

conditions.

Parachute inflation was smooth and uniform. The time from llne

stretch to first full inflation is seen in Figure V-6 to be .56 seconds.

This value is plotted in 3igure V-7 along with similar data from PEPP and

LADT flight tests. The filling time for AV-4 agrees very closely with AV-I,

falling near the lower edge of the expected uncertainty in this parameter.

The nominal and expected dispersion envelope shown will be re-established

as a result of the total BLDT e_peri_,nce.

E. Opening Load

Figures V-8 and V-9 show the time-history of the total longitudinal

parachute load recorded by the bridle attach point tensiometers for I0 and

50 seconds after mortar fire. The first peak load is seen to be 13,253 Ibs.

and occurs 1.57 seconds after mortar fire (.025 seconds after first full

open). The actual maximum load of 16,]96 Ibs. occurring at 2.30 seconds

is reasonably close to the opening load of 17,123 ibs. obtained by simula-

ting AV-4 deployment conditions.

The individual tensiometer readings are recorded in Figures V-IO,

V-II and V-12. By proper combination of the three tensiometer readingm,

the equivalent parachute load pull angles in pitch and yaw are obtained

and plotted in Figures V-13 and V-14. These angles are the projections in

the pitch and yaw planes of the total angle between the parachute load and

the forebody vehicle centerline. The total pull angle is shown in Figure
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V-15. The large pull angles prior to load build-up (0 to 1.5 seconds from

mortar fire) are influenced by line and swivel dynamics and do not reflect

significant load conditions. The structurally significant pull-off angle

occurring at peak load (t = 2.3 seconds) is 3.2 degrees. This value is

within 0.2 degree of the AV-I peak load pull-off angle and agrees quite

well with analytical predictions in Reference 8.

Accelerometer readings in the X, Y and Z axis directions during the

I0 and 50 second time periods are shown in Figures V-16, V-17 and V-18.

The peak longitudinal acceleration of -9.728 g's occurs at 2.29 seconds

after mortar fire and reflects a parachute opening load of 16050 Ibs. This

is based on subtracting out the aeroshell drag component using CD of 1.6,

a dynamic pressure of 8.5 PSF, and a payload mass of 55.8 slugs. The longi-

tudinal accelerometer, therefore, confirms the opening load recorded by the

tenslometers almost exactly. Mortar fire at t = 0 and aeroshell separation

at t = 7.65 seconds are clearly visible on the mccelerometer plots. Noise

spikes on the accelerometer traces at t = 33, 35 and 42.5 seconds should

be ignored.

F. Vehicle Stability

The BLDT vehicle was coning about the velocity vector with an angle

of 5-6 degrees and had a residual spin rate of 30 degrees -er second.

Although the vehicle was very near aerodynamic trim st mortar fire, it had

an attitude rate of -I_ degrees/second and was moving to a higher angle of

attack. The motion of the vehicle after mortar flre aggravates the initial

alignment between the inflating parachute and the vehicle centerllne and is

a measure ,f the severity of the attitude rate transient to the vehicle.

The attitude rate translent on AV-4, therefore, should represent near worst
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case conditions. The vehicle attitude rate time-histories in Figure V-19,

V-20 and V-21 confirm a significant attitude perturbation at parachute

opening shock. Peak rates of iii degrees/second in pitch and 81 degrees/

second in yaw occur 2.97 seconds after mortar fire or shortly after peak

load. The damping characteristics of the parachute in reducing the magni-

tude of this oscillation are not as good as was predicted in Reference 2.

It takes 22 seconds before the pitch and yaw rates fall below 30 degrees/

secon,'. The rates out beyond 50 seconds are significantly lower than the

AV-I experience mostly because the long period oscillation attributed to

canopy damage was not in evidence on AV-4. It is noted that pitch and

yaw rates do not exceed 17 degrees/second beyond 77 seconds from mortar

fire. The roll rate in Figure V-20 is seen to gradually reduce from 30

degrees/second at mortar fire to near zero at 150 seconds.

The rotation rate data generated on this flight is probably more typi-

cal of what to expect on Mars than the data produced by the flight of AV-I

with its damaged canopy. Nevertheless, these flight results will have to

be extrapolated to Mars before being applied as reouirements to Viking

hardware.

The tendency of the DGB parachute to oscillate or cone about the velo-

city vector has been observed on this flight. During the high altitude

phase of parachute flight, radar ground track and trajectory -econstructlon

efforts indicate a coning parachute motion. Film coverage of the parachute

motion just prior to ground impact, seems to indicate more of an oscillatory

motion with an amplitude of _ 8.5 degrees and a period of I0 seconds per

cycle. This characteristic motion will require further evaluation and com-

parison w|th other BLDT flights.
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G. Parachute Dra_ Performance

The evaluation of the drag of the parachute was conducted i_i two

overlapping phases. The first used the reconstructed vehicle trajectory

parameters at mortar fire and integrated the axial accelerometer data as

a drag acceleration to obtain the subsequent trajectory. This zero llft

trajectory deviated grossly from the tracking data. The deviations indi-

cated a force normal to the velocity vector was present. The radar data

was then re-examined to evaluate this acceleration vector converted to an

L/D (lift-to-drag ratio). When this llft time history was included in

the analysis, the integrated trajectory conformed to the radar measurements

and was used to obtain the dynamic pressure for non-dlmensionallzlng the

tensiometer and accelerometer data into a force co_fflcient. The conversion

to an incremental parachute force coefficient was then made to the ten-

siometer data by adding to it the force necessary to maintain the relative

velocity between the parachute and vehicle equal to zero; i.e., the

acceleration force on the parachute mass.

The telemetered accelerometer data was used for this correction in

the equation.

CFT = (FT - Ax * Wp)/Q Sp)

where:

CFT = Parachute Force Coefficient

FT = Sumation of Tensiometer data, lb.

Ax = Vehicle Axial Acceleration, g's

Wp = Weisht of the parachute, 95 lb.

Q - Dynamic pressure

Sp = 2206 ft
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The axial acceleration of the vehicle was converted to the incre-

mental parachute force by removing the estimated drag of the aeroshell

or base cover from Reference 4. The equation used is:

CFA = Ax * WT/( Q Sp) - CDvSv/S p

where:

CFA = Parachute Force Coefficient

Ax = Vehicle Axial Acceleration, g's

Q = Dynamic Pressure, PSF

Sp = 2206 ft2

CDv = Forebody drag coefficient

Sv = Forebody reference area, 103.8 ft2

WT = Total system weight, 1897 Ibs. before Aeroshell Separation

1541 Ibs. after Aeroghell Separation

It should be noted that the coefficient derived using these equations has

been labeled a force coefficient since the loads have not been resolved

relative to the velocity vector. In order to separate the llft component

more information concerning the angle of attack of the vehicle and angle of

attack of the parachute would be required. The relative loads in the 3

bridles give some information as to their relative attitude and show this

angle is small, however the overall attitudes will require further evalua-

tion. This evaluation phase was conducted ,ntil 50 seconds after parachute

deployment.

The second phase was begun using trajectory data from radar Just

after aeroshell separation and evaluated the drag coefficient necessary

to obtain the radar altitude at various subsequent times. In both phases

the beqt estimates of the meteorological data was used. During this

evaluation, the parachute lift again produced irregularities in the
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tracking data which could not be matched with a zero lift trajectory. A

more detailed examination of the tracking data showed sinusoid_l oscilla-

tions in the North-South and East-West velocities after vertical descent

should have been attained (80 seconds after deployment). The mean value

of the oscillation was in agreement with the prevailing wind data but

deviated alternately in a North, West, South, East repetitive fashion.

The acceleration necessary to cause such a velocity change to the descending

parachute was interpreted as a lift vector which was coning counter clock-

wise about the descent velocity. Figure V-22 presents the magnitude and

rotation rate of this coning angle as well as the L/D used in Phase I.

Since the quasi-steady state drag is time averaged, the llft was not

included in the drag evaluation which is based only cn the descent rate.

Parachute axial force coefficients derived from accelerometer data

and tensiometer data are plotted versus Mach number in Figures V-23 and

V-24 respectively. The two plots are almost identical to une another,

showing dips at Mach 1.66 and 1.90 where the canopy collapses partially

(See Figure V-6) and at aeroshe[l separation (Hach 1.18). The expected

dispersion of parachute drag from wind tunnel results, (Reference 7), is

superimposed over the flight test results in the two figures. Both plots

show a dr_matlc drop in magnitude near Mach 1.0 as predicted by the wind

tunnel results. The supersonic drag performance is near the high side of

the expected dispersion of this parameter.

When near steady state descent conditions are achieved, the tenslo-

meter and accelerometer data become poor sources of drag performance. The

vehicle is so near equili_-lum that noise on the traces becomes larger than

variation in the parameter of interest. The quasl-steady state drag per-

formance is determined by iterating on drag coefficient until the altitude
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change over a time increment matches the tracking data. The drag coeffi-

cient estimates derived in this manner are plotted in Figure V-23 and

average at 0.63, slightly above the wind tunnel nominal value of 0.61. A

trend toward an increase in CD at low Mach number below 40,000 feet alti-

tude is indicated.

Plots of parachute axial force coefficient versus time in Figures V-25

and V-26 are included for convenience In correlating thls data wlth time.

The trajectory parameters of dynamic pressure, Mach number and flight path

angle which were used in post mortar fire trajectory reconstruction are

presented in Figures V-27, V-28 and V-29 respectively.
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H. Aeroshell Separation

Aeroshell separation on this flight was intended to demonstrate satis-

factory system operation at a Mach number of I.I and dynamic pressure of 2.43

psi. Actual AV-4 separation took place 7.65 seconds after mortar fire at

which time the Mach number was 1.18 and the dynamic pressure was 3.18 psi.

The vehicle was pitching at 56 degrees per second at the instant of aeroshell

separation. This is almost twice as high as the specification :_te of 30

degrees/second which is a design criteria for the separation guide rall sys-

tem but is significantly lower than the 69 degrees/second experienced on

AV-I.

The objectives of the separation demonstration are:

(I) To determine that there are no unpredictable aerodynamic

disturbances at separation that would compromise the Viking

misslonp

(2) To exercise the separation hardware and concept to insure that

analytical evaluations of separation dynamics are valid, and

(3) To determine that parachute drag is adequate to produce a mini-

mum of 50 feet of separation between aeroshell and lander in 3

seconds.

Photographic evaluation of aeroshell separation on AV-4 reveals a well

behaved, predictable performance. Separation distance versus time is obtained

from the Millikencamera film by knowing the diameter of the aeroshell to be

II.5 feet, the horizontal field of view of the camera to be 54.9 degrees and

the frame rate to be 32 frames/second. The separation distance may then ",

calculated by measuring the aeroshell Imase size on a specific horizontal

field of view and correlatln$ with the number of fraums since s_paratlon.

li.5 x R.F.V,
Separation Distance =

.958 x Image Diameter
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The separation d_taqce versus time plot in F_%ure V-30 _hows 206 feet of

separation in 3 _econds. Simulation of this separation using actual AV-4

flight conditions including parachute drag shows excellent agreement with

the flight results, it should be noted thac a slight dip in parachute drag

shortly after aeroshel! separation (7.65 secol,ds after mortar fire) as seen

in Figure V-25 had to be simulated to get good agreement in th_ simulation.

This drag reduction occurs in the transonic region where wind tunnel tests

predicted a reduction in drag coefficient. No significant hange in the

parachute projected area was observed during aeroshell separation that would

account for the changing drag (see Figure V-3 at t = 7.72). The fact that

s paration took place at a dynamic pressure 31 percent higher than planned

would have the effect of increasing the separation di_tdnce in 3 seconds by

almost the same percentage.

The first 12 inches of aeroshe]l separation dis_ _nce versus time is

obtained from extensiometer data and plotted in Figure V-31. The AV-4

separation motion is slightly faster than simulatio,J would predict. The

fact that all three extensiometer readings do not agree is an indication of

relative angular rotation b_tween bodies as the aeroshelt separates. In

order to compute the extent of angular rotation, the guide rail and entensio-

meter locations must be defined as in Figure V-32. The guide rail system

involves 3 rails anQ guides which provide moment constraint for the first

b inches of separation and shear constraint for the final 6 inches of travel.

The relative rotation angle between aeroshel| and lander is plotted in Figure

V-33. The maximum angle at the point where total moment constraint is lost

is seen to be 1.7 degrees. This compares with a ].53 degree relative angle

recorded in a ground test of the system subjected to a bending moment of

560 ft-lbs (.87 x design moment). The AV-4 guide rail system therefore
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_pears to have been subjected to near design bending moment on this flight

and functioned satisfactorily without any apparent damage. Also evident

in Figure V-33 is the constraining influence of the rail_ after bottoming

out approximately 0.7 degrees of system tolerance at .06 seconds. This

tolerance agrees well with the expected tolerance of .5 to 1.0 degree be-

tween mating parts of the system.

I. Parachute Recovery Assessment

A detailed post-test examination of the p_cachute was conducted by

MMC and GAC. A report of this inspection by the parachute contractor is

presented in Appendix C. A graphic description of canopy anomalies is

included as Figure C-I therein. In general, the parachute suffered no

significant damage and this test is therefoce considered a successful

qualification of the decelerator. There were black smudge m, rks noted

t_,at probably came from mortar or BLDT engine exhaust residue. The

several small tears and holes found in the canopy seemed to show evidence

of heat damage and would suggest hot engine exhaust p3rticle impingement or

bag stripping frictional damage.

Pre-flight and post-flight parachute dimensions are recorded in

ApFondix D. Between the time of pre-flight measurement and post-flight

inspection, the packed parachute is exposed to a heat compatibility test.

Experience has shown that suspension llne lengths shrink approximately 2

percent during the heat cycle. Therefore we can assume suspension lines

that are initially 90 feet long _brink to 88 feet prior to flight. The

suspension llne length increase, as a result of flight load, ranges from

2 feet II inches on radial 35 to 4 feet _ inches on radial 6. The disk

radial dimension increase varied uniformly between 1 inch and 2-3/8 inches.

-D
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Compared with AV-I, these changes indicate a fairly symmetric canopy infla-

tion. The bridle leg length increases were 3/8, 3/8 ar,d 1/2 inch respectively.

Other dimensional changes were minor.

1973004297-043



V-17

TABLE V-I

PARACHUTE GEOMETRIC PROPERTIES

Item Relctive Value Value

Nominal diameter D 53 feeto

Geometric porosity* 0.125 SO 276 ft2

_ot_l area (So)** (_/4) Do 2 2206.2 ft2

Disk area+ 0.53 So 1169.3 ft2

Disk diameter 0.726 D o 38.5 ft

Disk circumference 2.E85 Do 121 ft

GAP area 0.12 SO 264.7 ft2

GAP width 0.042 DO 2.2 ft.

Band area 0.35 SO 772.2 ft2

Band width 0.121D o 6.4 ft

Vent area 0.005 So ll.O ft2

Vent diameter 0.07 Do 3.7 ft

Number of suspension lines -- 48

Length of suspension lines 1.7 Do 90 ft

* Vent plus gap provide 12.5 percent geometric porosity

** Disk + gap + band

+ Includes vent
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VI. VEHICLE PERFORMANCE ANALYSIS

The following is a summary assessment of the BLDT vehicle performance.

The summary is presented by subsystem/disclpline.

A. Flight Dynamics

The objective of the flight dynamics portion of the report is to

establish the actual flight performance of the AV-4 vehicle from the com-

mand for vehicle release from the load bar through the command for decelera-

tor mortar fire. It is notea that the flight of vehicle AV-4 was required

due to the fact that vehicle AV-I, Case I, supersonic test was declared a

decelerator qualification "no test". The no test resulted from the imposi-

tion of overtest dynamic pressure conditions at decelerator mortar fire and

at peak load with subsequent damage to the parachute (see TR-3720289).

Subsequent to the flight of vehicle AV-I, the Mach number/dynamic pres-

sure test requirements for the supersonic test case were amended to reflect

a new Mars atmespheric definition. (See Reference I). A comparison of the

AV-I and AV-4 target mortar fire and peak load conditions are given below:

Mach Number Dynamic Pressure CPSF)

Mortar Fire AV-I 2.27 11.8

AV-4 2.17 10.84

Peak Load AV-I 2.17 10.66

AV-4 2.06 9.3q

The vehicle performance requirements for the Case 2 supersoni_ test

vehicle based on the revised Mars worst case environments and characLerls-

tics of the BLDT vehicle which will differ from the actual VLC are:

1973004297-081



VI-2

I. Resultant _ngle of attack at mortar <_17 degrees
fire

2. Residual spi_ rate at deployment <__I00 degree_/second

3. Mach number .nd dynamic pressure at peak load within the test

envelope shown in Figure VI-I.

The peak load requirements box is established s+ich that a 2a disper-

sion ellipse of dynamic pressure, based on BLDT performance parameters

tolerances, is tangent to the revised 3_ overload limit of the d celerator

and at a Mach number greater than 1.9.

_igure VI-I also presents the actual mortar fire and peak load Math

number/dynamlc pressure conditions for the flight of vehicle AV-4. The

Rach number/dynamic pressure performance requtrem_mt box for vehicle AV-I,

Case I supersonic flight is shown on Figure VI-I for comparison purposes.

I. Data Sources

The intent of this section is to evaluate the flight performance

of BLDT AV-4 by reconstructing its trajectory using flight data data. The

reconstruction is primarily based on three source+ of data:

o Meteoloroglcal data (density, velocity of sound, and winds);

o Telemetry data (accelerometers, gyros and magnetometers); and

o Radar data (slrnt r_nge, azimuth and elevation).

a. Meteorological Data - Meteorological data were obtained by

standard WSMRradiosonde observation balloons (RAOB) and LOKI rocket probe_.

The RAOB probe produced pressure, wind direction and velocity and tempers-

lure at 5000 feet intervals from surface to approxinlately II0,000 feet.

The LOKI rocket probe produced temperature and wind data at 5000 feet inter-

vats from 80,000 feet to approximately 150,000 feet. The combitation of the
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RAOB and LOKI data defined the atmospheric parameters from surface to eltl-

tude. Three atmospheric profiles were c.... le_ for the AV-4 fl_.ght as

follows:

T-24 hr. data:

LOKI #[60 Launched 12 August 1972

RAOB #550 Launched 12 August !972

T-I hr. data:

RAOB #136 Launched 13 August Iq72

LOKI #!62 Launched 13 August 1972

T+I br. data:

RAOB #225 Launched 13 August 1972

LOKI #162 Launched 13 August 1972

The T-24 hr. data were used by the real time computer* during the

actual flight to predict impact and command mortar fire. A comparison

of the density of the above 3 sets of data shows that the T-I hr. data

were close to the average. Therefore, the T-I hr. d=ta as shown in Table

Vl-I were used for all flight performance analysis.

b. Telemetry D_ta - The flight vehicle telemetry (TM) data were

transmitted via an S-band llnk to the NSMR receiv ng stations J-t0 an4 J-67

where they were recorded and retrausmitted via microwav- lin_s to the {light

operations control station at bu!_llng 300. These receiving statIGnb are

geosraphlcally located to provide continuous _overa£e of the real time mis-

slow Tbelr locations ure shown in Figure VI-2. At buildlr$ 300, the TM

data were recorded for post-flight usage and also terminated a various

display_ for obser_,atlon and control of the mission.

* The W$I_ computer real time software is discussed in Appendix E

1973004297-083



VI-4

The conditioned and smoothed TM accelerometer and rate gyro data, which

were used for flight performance analysis, are shown in Figures VI-3

through VI-6. Figures VI-3 and VI-4 are gyro and accelerometer data respec-

tively for the time period prior to the vehicle release f_m the load bar.

The effect of pointing commands are reflected in the spin and yaw gyro data.

Figures VI-5 and VI-6 are the same data during vehicle powered flight. It

is noted that all of the accelerometer and gyro data were _moothed and

conditioned except :he a_..elerometer data prior t_ drop which was only

conditione_ Th se data were filtered with a seventy (70) point standard

lease squares quadratic leading edge filter. The condit_oning was based on

a two sigma (20) dispersion limit of the filtered data with wild points

replaced by the quadratic prediction.

The initial estimates of instrumentation bias, were obtained from

thes_ lots by integrating the gyro data du ing the float period (Figure

VI-3) and adjusting the accelerometer d_ta for zero setting during the free

fall portion of flight immediately after release from the load bar (Figure

VI-_). The TM instrumentation system is designed to provide a 5% end to

end error tolerance limit but wi_h the above biases it is judged that the

instrumentation accuracies can be assumed to be 2%. This provides the

following accuracies:

FL_CTION TOLERANCE

Gyros 6 deg/sec

Lateral Accelero_eters 0.02 g's

Longitadiual Accelerometer 0.I0 g's

c. Radar Data - The BLDT vehicle was tracked by (4) WSMR FPS-

16 radar sets, three (3) wcre b, acon track and one was skin track.

The beacon track r,d_rs (Rlz2, R123 and R128) were used foT continuous

t

1973004297-084



VI-5

track of the vehicle until loss of beacon (T + 400 sec) at which time they

switched to skin track. The skin track radar was utilized to track other

system components such as balloons, load bar and aeroshell. The stated

accuracy of the FPS-16 radars is 0.1 to 0.3 mils in angles and 15 to 45

feet in range, which is approximately 50 feet of space pesition.

The radars provided slant range (R), azimuth (A) and elevation (E)

data with respect to the radar site. Only the beacon track radars were

m

considered for performance analysis. These radar locations are shown in

Figure VI-2. Comparison of the data from the three beacon track radar

sites show significant errors in all three parameters, therefore an analy-

sis of the radar data was undertaken. This analysis consisted of trans-

forming the (R), (A) and (E) from a given site to an (R), (A) and (E) of

a second site where the derived (R), (A) and (E) were compared with the

actual measured data for the second site. This analysis was completed

for radar sites R122 vs. R128, R123 vs. R128 and R122 vs. R123 and the

reverse of eech. This analysis indicates the maximum systematic differ-

ence existing in the data are:

RANGE AZIMUTH ELEVATION

(ft) (ft) (_t)

R122 vs. R128 125 350 180

R123 vs. R128 15 180 140

R122 vs. R123 15 350 200

_e time plots of (R), (A) and (E) differences are presented in Figures

VI-7, VI-8 and VI-9.

The analysis of the plots indicates that the data from site R128 was

consistently noisier than the other two sites with blgh tracking error

spikes in elevation on any comparative data where site R128 was involved.

When site R122 was transformed to site R128, a large syqtematic range
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error occurred_ile transformation of site R123 data to R128 did not

produce a gross range error. This indicates that site R122 data contains

errors in the azimuth and elevation parameters.

The conclusion of this analysis is that radar data from the flight of

vehicle AV-4 does not meet the accuracy specification for the FPS-16 radars

and that the site R123 data contains the least error, therefore site R123

data was selected as prime radar data for AV-4 data analysis.

For beacon track radar, range rate can be determined very accurately

while azimuth and elevation cannot be determined with a high degree of

accuracy. Since the flight direction of the AV-4 vehicle with respect to

the beacon radar site locations (See Figure VI-2) are such that slant

range is almost a constant (i.e. small range rate change), the vehicle radar

positions are derived mainly from azimuth and elevation which are subject

to slew rate errors. The type of errors seen in the radar comparative

analysis are probably slew rate errors.

The radar data were post flight correcteJ by WSMR for systematic errors

which were determined by pre-flight calibrations. Raw data of range azimuth

and elevation were smoothed by standard WSMR filter techniques to produce

velocity, altitude, flight path angle and azimuth. These velocity, flight

path angle and altitude data are presented in Figures VI-IO through VI-12 for

radar site R123. These data are earth reference measurements and are not

ambient aerodynamic conditions.

2. STEP Trajectory Reconstruction

The Statistical Trajectory Estimation Program (STEP) (Reference

9) was used to determine the reconstructed trajectory. This program solves

for the initial conditions (position, velocity, and attitude of the vehicle)
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so that by integration of the gyros and accelerometers the trajectory

matches the radar data (range, azimuth and elevation). Besides solving

for initial condition it has the capability of determining the systematic

errors (biases and scale factors) on the gyros and accelerometers. The

program gives a minimum variance solution on the radar measurements (range,

azimuth and elevation). The trajectory is considered to be the optimum

when the radar data are randomly dispersed about the reconstructed trajec-

tory and the variance of the range, azimuth and elevation is within the

expected tracking accuracies of the radar.

STEP requires an estimate of the biases and scale factors on the gyros

and the accelerometers. In order to obtain these biases on the gyros,

the telemetry data were examined from T-45 seconds to TrO (vehicle drop).

These data are shown in Figure Vl-3. At this time the vehicle had very

small motions and the centers of the oscillatory motions were determined

to be the biases on the gyros. These biases are:

Roll gyro (P) -i.0 degrees/second

Pitch gyro (Q) -.61 degrees/second

Yaw gyro (H) -3.50 degrees/s_cond

To d_termine the biases on the accelerometers, the data between T_-O and

T+I second were analyzed. These are shown in Figure VI-4. At this time

the vehicle is in a near zero force field which permits establishing a

zero setting. The average values of the accelerometer readings at this

time were:

X-accelerometer 0.0 ft/sec 2

Y-accelerometer -0.48 ft/sec 2

Z-accelerometer -0.756 ft/sec 2
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The scale factors on the gyros and acce]erometers were initialized at

unity.

The initial estimates of position and velocity at drop were ob llned

from smoothed radar data:

Latitude 33._871 deg.

l.ongitude -106.2322 deg.

Altitude 120,850 ft.

Velocity I00 ft/sec.

Flight Path Angle (gamma) +1.4 deg.

Azimuth -126 deg.

The initial estimates of the body Eul_r angles are required for body

heading (PSI), pitch (THETA) and roll angle (PHI). The initial Euler

angle estimates are:

PSI -137 °

THETA 55 °

PHI 0°

The initial estimate for PSI was taken from the magnetometer reading

at drop while _7{ETA was estimated at 55° based on nominal value.

Given initial conditions and previously established biases and scale

factors, STEP was not able to provide a comparative trajectory match to the

radar data between T+0 and T+38 seconds due to systematic errors in the radar

data and the necessity for scale factors on the TM data. By changing the

scale factor on the gyros, STEP was able to improve the trajectory match.

The most sensitive parameter was the scale factor on the roll gyro (P). A

scale factor of .9815 gave the best fit to the radar data from site R123. As

previously discussed under Radar Data (VI A,I,c) all beacon t_ack radar data

showed systematic errors with RI=3 data being selected as having the least

error.
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STEP reconstruction for vehicle AV-4 did not display radar random dis-

persion about the vehicle reconstruction trajectory which would have been

considered optimum, but this result wcs anticipated since the radar compara-

tive data (see Figures VI-7, VI-8 and VI-9) displayed systematic error rather

than a random type of error. The STEP reconstruction trajectory differed from

the radar track in a _ystematic manner and within the deviations established

by the radar comparison at+_alysis. It is felt that the trajectory reconstruc-

tion is optimized to the maximum extent possible using the existing radar

data.

STEP was also programmed to compute the best estimate of the biases and

scale factors on the gyros and accelerometers. The only revision resulting

from this analysis was to change the roll gyro scale factor from 1.0 to

0.9815 and this is within the accuracy of the instrumentation system.

STEP reconstructed trajectory pr_lides a very accurate measurement of

altitude and velocity. Combining these values with the meteorology data,

velocity relative to the wind, Mach number and dynamic pressure were com-

puted. Time history of altitude, velocity, Mach Number and dynamic pressure

are shown in Figures VI-13 and VI-14. Figures VI-15 and VI-16 show the body

and velocity vector orientation versus time. The conditions established by

STEF at mortar fire and peak load, provided in Table VI-2, show that the

flight performance did meet the requirements for dynamic pressure as required

in Figure VI-I.

The angle of attack, sideslip and total angle of attack are shown in

Figures VI-17 and VI-18. The total angle of attack shown on Figure VI-18

never exc_ ds the value of 15° which i8 less than the required value of .--<17° .
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In conclusion, the actual trajectory of BLDT AV-4 was predictable. All

flight parameters were within 2a statistical dispersions of nominal pre-

dicted values. The deployment Mach Number/dynamic pressure test conditions

were within the designed 2a ellipses shown in Figure VI-I. Below, the

nominal flight conditions with respective statistical dispersions are com-

pared with the actual flight conditions at mortar fire:

Predicted Actual

Fli_ht Parameter Value 2a Dispersion Value

Dynamic Pressure (q) - ibs/ft 2 10.85 9.34 - 12.34 10.90

Mach Number (Mn) 2.178 2 _74 ° 2.282 2.126

Total Angle of Attack (N) -Deg. 10.7 5.0 - 16.4 5.2

Spin Rate (p) - Deg/sec 9.0 -21 - 39 30.0

Altitude (h) - ft 146,425. 143,791-149,059 147,186.

Velocity (V) - ft/sec 2324. 2204.- 2444. 2290.

The above flight parametric values at mortar fire and the statistical

dispersions comprise the succes criteria for the BLDT AV-4 per ,rmance.

As shown above each flight parameter is within its 2G predicted dispersion.

This comparison is also shown in Figure VI-13 for velocity and altitude, and

Figure VI-14 for Mach Number dynamic pressure and Figure VI-18 for total

angle of attack.

The actual mortar fire test conditions are displayed in the upper por-

tion of the 2_ e]lipse shown in Figure VI-I. The deviation from nominal

can be attributed to a combination of random deviations in the Ill independ,,nt

parameters considered in the statistical analysis, which are impossible to

isolate using flight data. However, two basic facts influence this condition;

t

i (i) The computer generated mortar fire command (Appendix E) was designed

to adjust the dynamic pressure upward depending upon the noise level

in the _eal time radar data.
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(2) The drop altitude, which was consistently low for all missions,

caused a lower than nominal Mach Number at mortar fire because of

an increased atmosphere density through which the vehicle flew.

The sensitivity of Mach Number at mortar fire to drop altitude

is approximately .06/1000 ft. The fact that the altitude was

700 feet low at drop of vehicle AV-4 provides a Mach Number

shift of approximately 0.042 which is sufficient to account for

the lower than nominal' Mach number test condition at mortar flre.

B. Capsule Aerodynamic Characteristics

The aerodynamic characteristlcs of the vehicle are difficult to separate

from the thrust misalignment effects and inertial cross coupling due to roll

during the powered portions of flight. However, after despin and prior to

mortar fire the vehicle motiop was due to the aerodynamic forces and moments.

The aerodynamic drag and the pitch and yaw moment coefficients were evalua-

ted based on the acceleration and the gyro data using the equation:

CD = AD + WT
qS

+ IYY - P*R (IEZ-IXX)
Cm qSL

+ izz - ( x-iYYC =
n qSL

where: _D = T/M accel_ration component along the velocity vector,
g's

WT - weight, 1891 lb.

q - dynamic pressure, PSF

S = reference area, 703.8 ft2

L - reference length, 11.5 ft

Igg = roll moment of inertia, slug ft2

IYY = pitch moment of inertia, slug ft2
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IZZ = yaw moment of inertia, slug ft2

P = roll rate, rad/sec

Q = pitch rate, r_d/sec

R = yaw rate, rad/sec

= pitch acceleration, rad/sec 2

= yaw acceleration, rad/sec 2

These data are shown in Figure VI-19 where the drag coefficient is

compared to the predicted data from Reference 4 evaluated at the flight

total angle of attack and Mach Number. The flight data are below the pre-

dictions probably due to residual thrust. The aerodynamic moment coefficient

data were used in conjunction with the predicted moment data to estimate the

angles of attack and sideslip. These data are compared to the Step Reconstruc-

tion of the angles of attack and sideslip in Figure Vl-20. The differenre is

probably due to a slight roll attitude error in the" STEP reconstruction.

C. Thermal Control Subsystem

The design requirements for the BLDT Thermal Control subsystem were

based on maintaining previously qualified hardware within the maximum and

minimum specified qualification temperatures. Except for several isolated

electrical heaters, a passive thermal control system was utilized on the BLDT

vehicle for ascent and float control. The passive ssstem was based on vehi-

cle attitude and vehicle ascent rate to float altitude with convection,

solar radiation, reflected solar radiation and infrared radiation being the

major heat transfer parameters being considered.

The design ascent profiles are shown in Figure VI-21 with the fast ascent

rate, when integrated with the above mentioned parameters, producing the hot

case and the slow ascent rate producing the cold case. Figures VI-22,VI-23,VI-

i 24 and VI-25 show select hot and cold case predicted temperature profiles for
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the base cover, rocket motor support structure, aeroshell and S-band trans-

mitter respectively. Also shown in these figures are discrete point actual

temperatures, expected from the _4 data which were recorded at approximately

half hour intervals. It is noted that the actual temperatures generally

remain within the hot and cold case predictions and are generally closer to

the hot case as would be expected due to the actual ascent rate.

Presented below is a table showing the temperatures measured by the

"on-board" thermistors at the time of vehicle release from the load bar and --

at aeroshell separation compared with the specified requirement at vehicle

drop.

SPECIFICATION

REQUIREMENT (°F) ACTUAL TEMPERATURE (°F)

THERMISTOR NAME MAX. MIN. DROP A/S SEPARATION

Rate Gyro 125 0 79 77
Boost Motor #I 165 -65 57 124

Equipment Ballast 165 0 82 80
S-Band Transmitter #I 165 0 100 99

Instrument Beams #I 125 0 63 63

Bridle #I 210 -90 34 35

Aeroshell #I 175 -I15 42 48

Boost Motor #2 165 -65 54 130

Mortar Cannister #I 80 No Min 44 81

Mortar Breech 75 25 49 52

Instrument Beam #2 125 0 59 59

Bridle #2 210 -90 35 36

Aeroshell #2 173 -I15 3 ii

Rocket Motor Support (No Prediction) 44 45
Structure

Mortar Cannister #2 80 No Min 46 85

Mortar Breech Flange 72 25 48 68
3rifle #3 210 -90 37 38

* Main Battery 80 50 46 46

* The thermistor titled "main battery temperature" is misnamed, it really

measures rocket motor support structure temperat,re.
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D. Propulsionj Azimuth Pointing and Ordnance Subsystem3

The main propulsive system on the AV-4 vehicle wa the 4 Rocketdyne

solid rocket motors. These motors have classi[]ed pe_formaace _haracteris-

tics and therefore their specific performance param,zters will not be given.

Solid rockets were also used to affect spin and despin of the vehicle to

minimize the effect of the main rocket motor thrust vector to center of

gravity misalignment. In addition to the solid rockets, pyrotechnic ordnance

was used to effect load bar separation,aeroshell separation, and camera lens

cover opening. Cold gas thrusters located at the _xtremlties of the AFCRL

load bar were commanded _rom the ground through the command receivers on-

board the vehicle The fllgI_t performance of these subsystems will be dis-

cussed in this section.

I. Spin/Despln Motor Performanc, _

The spin-up command generated by the onboard programmers 1.02

seconds after drop from the load bar, caused ignition of the 6 spin motors

with no notlcable delay between motors. The spin rate generated was 203 degrees

per second. This was 2.5% higher than pcedlcted. The 4 despin rocket motors

were ignited at 33.09 seconds and produced an incremental rate of 140 degrees/

second. This w-_ 6% higher than predicted. This higher performance Is pro-

bably due to the plume over expanding and recirculatlng to produce a pressure

force on the spin/despln motor bracket. The base cover near the spin motors

showed some evidence of plume impingement on both the splnup and despin side.

2. Main Propulsion System

The four solid rocket motors were ignited 2.04 seconds after release

frcm th_ load bar and ehowed no notlcable time delay between their thrust

buildup. There was a slight thrust dlff_rentlal which produced a slight

1973004297-094



Vl-15

lateral (Y) acceleration at ignition (see Figure Vl-6) and also a slight mis-

alignment between the thrust vector and the center of gravity.

The body r_tes at ignition, prior to developing element a_odynamlc

forces indicate a yaw moment which is in agreement with the lateral accelera-

tion, however, the pitch moment indicates a 0.030 inch displacement of the

thrust vector from center of gravity in the -Z direction. The subsequent

variation in lateral accelerations appear to be the result of a relatively

low burn rate on rocket motor No. 1 (+Y +Z).

There was no evidence of Rocket exhaust recirculation heating nor plume

radiative heating of the base cover and parachute bridle or camera lens cover.

3. Azimuth PointlnK Subsystem

The azimuth pointing system performed as predicted during fl_ght.

During ascent, the wind shears and main halloa- inflating produced erratic

torques to the load bar which resulted in rotational amplitudes up to 3

revolutions, peak-to-peak. The zero torque a;:imuth also varied (see Figure _I-

26). Ballasting continued until 35 minutes prior to drop at which time

all remaining ball._" wa_ released. The polnting system cold gas thrusters

were checked out during this 9eriod of time by pulsing them at times which

would reduce the oscillation amplitude. This aided the natu_ 1 damping

of the system such that when the float altitode was reached, the oscilletlon

amplitude was 235 degrees peak-to-peak. _ va_'_atlon in the moment of inertia

of the suspended _;ystem was the maximum po=_:il.le since a'l ballast was dropped,

however, the torsional stiffness of the recovery parachute system, based ou

the period of oscillation, agreed well with the torsional test _easurem _ J

used for designj (see Figure VI-27). The oscillation amplitude decay at . oat

exhLbited damping ratio of 0,08 which was close to th_ predicted value of
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of 0. i used in design. The zero azimuLh varied slnusoldally doting float

and while the azimuth was being maintained, passed through the require3 drop

azimuth. _is required the pointing operator to change from counter clock-

vise thrusting to clockwise during th_ last eight minutes prior to drop,

however, no difficulty was encountered and the proper drGp azimuth was

maintained within _ 4 degrees. The _hrusters exhibited 16 torq_ _ which

wa_ more than sufficient to counter the 2.3 ft-lb of rorque which was genera-

ted by the 95 degrees of windup. The pointing pressure supply was consumed

at a rate of 5.3 psi/see of jet on time and the residual supply pressure was

1585 psi. The last comm_t,d was terminated 7.7 seconds before drop with maxi-

mum rates less than 0.5 degrees/second. These effects of pointing com_ai:ds

on the roll and yaw gyros can be seen in the gyro data shown in Figure VI-3

and wa_ taken into account when the biases were evaluated.

4. Ordnance Subsyqtem

All pyrctechnlc and pyromechanlcal devices perforlned properly as

programmed. Post-fllght inspection revealed that all ordnance fu_,ctlons

occurredwith no damage to the flight vehicle.

E. Str____uucturalSubsystem

The structural subsystem provided adequate support and dynamic opera-

tion during all phases of the AV-4 mission. There was no evidence of any

structural failure in the load carrying structure and the dynamic portions

of the system including fllp away lens covers and aeroshell separation system

functioned as required. It i_ noted that the sponge seal which was installed

between the _ortar cannister and the mortar truss pr¢, "-ted the flow of mortar

gases into the BLDT instrument c,-mpartment. Po_t f'ight inspection showed
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that the .ate gyro section of th,.instrument compartment was relatively clea_

compared with the same section on Vehicle AV-].

Inspection of the recovered hardware indicated the following conditions:

I. Aeroshell - nose cap poked out and inboard skins bert. All damage

xesu]ted from grour,J impact.

2. Rocket U9_or Support Structure - The RMSS wa_ undamaged except that

the forward command antenna was poked from its installation _:ith the two

antenna structural brackets breaking. All damage was due to _round i,epact,,

3. Base Cover - T_e base cover was recovered _,,an undamaged condltiot_.

Tt is _oted that the ablative material which i_ bonded to the base co_er

remaived intact during the flight and recovery operaLioLl.

4. Parachute Truss - no,visuat damage.

_. Equipment Beam - no visual damage.

6. Loao Lar Eupport Structure - no visual damage.

F. Elect_ical Subsystem

Tae electrical power and sequencing systems opere_ed satisfactorily

during the complete mission. All battery voltages and timed events

remained within predlcted/required limits. The act,,at eirborne programmec_

Jequence ti_s are pzovid_d in Table D]-I.

Flight battereies were .tivated on August I, using previously estab-

lished activation procedures. On August 2, following installation in the

vehicle, main battery electrolyte leak established _n electrical short between

the battery "plus" stud and the battery case (ground) which resulted in a

subsequent explosion _htch ,_l_ped open the battery cover. No personnel were

injured or flight hardware damaged.

1973004297-097



VI-18

A second main battery w-_ activated August 2 without incident and in-

stalled in the vehicle prior to FRT. Activation stand time prior to instal-

ling battery cell caps has been increased, for all remaining batteries, as

an aid x_ assurin_ absorption of electrolyte in the individual cells.

Battery ,_-Itagesw, _ above minimum at launch and as shown in Table VI-3 during

the flight. Camera batteries, which were not instrumented, operated satis-

factorily as evidenced by "on-hmard" camera operations during the flight

seq,,_nce.

The vehicle command system operated as required following launch in

response to the following commands:

I_:09 HRS Z Safe/Safe Bill (Command System Check)

15:2_ HRS Z CCW (Verify Azimuth Pointing)

16:19 HRS Z - Arm Vehicle (Power _ogramer on Next Pointing Command)

16:24 !_RSZ - Azimuth Pointing and Hold

16:24:30.75 fIRSZ - Vehicle Drop

16:25:11.18 fIRSZ - Mortar Fire

G. Instrumentation Subsystem

The 53 commutated data channels and the 16 continuous data channels

performed without malfunction and provided data for each phase of the

mission. The quality of the data was improved by actions taken following

the flight of Vehicle AV-I (see report TR-3720289). The data provided during

the mission were in accordance with the data list shown in Table A-_ of

Appendix A.

i
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H. RF Subsystem

The airborne S-band telemetry, C-band tracking and command control RF

subsystems performed without malfunction throughout the flight. Signal

acquisition for all frequencies occurred within 30 minutes after launch.

Command system ground station checkouts were performed at launch - 2

hours. All command transmitters were monitored at the J-67 site for center

frequency, single tone deviation and triple tone execution of commands. All

command system checkouts were satisfactory, however the north Oscurs Peak

transmitter "A" deviation was slightly of the nominal 30 KHZ value. Conse-

quently, the Test Conductor requested that transmitter "B" at NOP be identi-

fivd as the primary NOP transmitter for the mission.

Telemetry data was monitored throughout the flight at J-67 and appeared

satisfactory in all respects.

I. TSE/OSE

The Test Support Equ!pment and Operational Support Equipment performed

within the design requirements for this equipment.

J. Mass Properties

The BLDT vehicle mass properties at decelerator mortar fire, were

established, based on the mass properties of the Viking Lander Capsule, to

be as follows:

Vehicle Weight 1888 + 12#

Y Axis Cg Location 0 Offset

Z Axis Cg Location -1.41 _ 0.030 inches

* X Axis Cg Location 31.7 to 33.7 inches.

* Referenced to Aeroshell Theoretical Apex.
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In order to fulfill the Y and Z axis Cg location requirements, the AV-4

vehicle was subject to a spin balance operation at Sandia Corporation Lab-

oratories, Albuquerque, New Mexico. During this operation, lead balance

weights were fastened to the vehicles to precisely locate the vehicle Cg

with respect to the Y and Z axis.

The vehicle AV-4 mass properties are sur=uarized in Table VI-_.

i
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TABLE VI-I BLDT AV-4 FLIGHT TEST ATMOSPHERIC PROPERTIES

NORTH-

EAST- SOUTH SPEED

ALTITUDE WEST WIND WIND OF SOUND DENSITY

(5000 FT) (FT/SEC) _FT/SEC) (FT/SEC) (SLUGS/FT 2)

I. -I. -1. 1128. ,20_6;-02

2. -8. -1. 1105. .16934-02
3. -10. -1. 1084. .14611-02
4. -5. q. 1071. .123G8-02
5. -q. g. 1053. .i0501-02

G. -9. 17. 1029. .Bg393-03

7. -7. 22. 1004, .75518-Q]
8. 11. 23. g7B, .G3315-03
9. -10. IG. 961. .51711-03

i0. -32. lB. 94G. .qlG21-03
11. -39. IG. 940. .32812-03
12. -33. C. 947. .25109-03
13. -43. 4. 95G. .192E8-03
lq. -50. 14. 964. .14863-03
IS. -q2. I0. 968. .llGO3-03
16. -53. -0, 981. .89063-04
17. -51, 2. 984. .70282-04
18. -63. 12. 990. .55189-04
lg. -Gg. -3. 992, .43772-04
2D. -B7. -13, g99, .34_83-04

21. -83. 12, 10_3, .7687G-04
22. -82. 16. 1016. .21529-0q

23. -83. 5, 1021. .17212-04
24. -71. -23, 1032. .13636-04
2_. -99. -I8. 1031. .ll[I71-Oq
26. -93. 28. 1033. .B9492-05
27. -116. 14. 1044. .T1305-05
28- -144. -3. 1059, .56704-05
29. -IGO. -0. 1073. ._5372-05
30. -159. -2. 10e7. .3&531-05
31- -132. 18, 1096. .23855-05
32- -107. 15. 1086. .25222-05
33, -I01. 44, 1070. .214G_-05
54. -102. 62, 1061. ,17977-05
35. -143. 17. 1057. .14813-05
36. -243. 29. 10_2. .12101-0_

i
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TABLE VI-2 STATE VECTOR DATA - AV-4

DROP MORTAR FIRE FULL OPEN

Time (t) - sec 00. 40.43 42.0

Altitude (h) --ft 120543. 147186. 147900.

Velocity (V) ft/sec -- 2290.2 2223.7

Gamma (r) - deg -- 12.3 11.24 --

PSI (_) - deg. -135.12 -148.5 -145.52

Theta (0) deg. 56.03 +6.6 11.68

Mach No. (MN) -- 2.126 2.057

Dynamic Pressure (q) ib/ft 2 -- 10.9 9.95

Angle of Attack (O[) deg. -- -4.1 .39

Sideslip (_) deg. -- -3.1 -2.15

Total Angle of Attack (_) - deg. -- 5.2 2.18

Spin (p) - deg/sec. -- 30. 30.
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VII. CONCLUSIONS

The conclusions reached from the in-depth analysis of the AV-4

mission data and films are:

A. The flight of the vehicle was as programmed and within the pre-

dicted dispersions and tolerances.

B. The dynamic pressure conditions at mortar fire were slightly

higher than predicted but within the tolerances required for the mortar

fire command to have been issued by the ground computer based on dynamic

pressure. The other BLDT requirements which were also met are:

Resultant Angle of Attack (DEG) <__17

Residual Spin Rate (DEG/SEC) <<I00

Decelerator Temperature (OF) <_80

C. The decelerator peak load occurred within the required Mach

number/dynamlc pressure performance box (See Figure II-I).

D. The mortar fire and decelerator peak ]oad test conditions were

within the bounds required for an acceptable case 2 supersonic qualifica-

tion test.

E. The decelerator performed as predicted with no unusual damage.

This constitutes successful qualification of the decelerator at the case 2

supersonic conditions.

_ F. The aeroshell separation function more than _dequately met the

i requirement for 50 feet of separation distance in 3 seconds.

!
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B. Abbreviations

A/B Airborne

AGC Automatic Gain Control

A/S Aeroshell

AV BLDT Flight Vehicle Designator

BLDT Balloon Launched Decelerator Test

B/U Backup

Cg Center of Gravity

CST Combined System Test

CW Clockwise

CCW Counter Clockwise

DGB Disk-Gap-Band

DEG Degree

Deg/Sec Degree/Second

fps Feet per second

FRT Flight Readiness Test

FT Feet

GAC Goodyear Aerospace Corporation

g's Gravitational acceleration = 32.2 FPS2

IRIG Inter Range Instrumentation Group

K I000

KHz Kilohertz

LADT Low Altitude Drop Test

I_C Martin Marietta Corporation

! NASA National Aeronautics and Space Administration

<

NOP North Oscura Peak

{ P Roll Rate

1973004297-134



VIII-3

PSF Peunds per Square Foot

PSI Pounds per Square Inch

PEPP Planetary Entry Parachute Program

q Dynamic Pressure

Q Pitch Rate

R Yaw Rate

RAOB Radiosonde Observation Balloon

RF Rcdio Frequency

_MSS Rocket Motor Support Structure

RTDS Real Tlme Data System

s Aerodynamic Reference Area

SCO Subcarrier Oscillation

S/N Serial Number

STEP Statistical Trajectory Estimation Program

T Time

TDC Tel_metry Data Center

TM Te lemetry

VLC Viking Lan6_r Capsule

V Time Rate of Change of Velocity

WSMR White Sands Missile Range

Z,Zulu Greenwich Mean Time
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APPENDIX A

DESCRIPTION OF BALLOON LAUNCHED DECELERATOR TEST VEHICLE

The BLDT Vehicle utilized for the high altitude qualification tests of

the Viking Mars Lander Decelerator consisted of six (6) major subsystems

which were:

o Structural Subsystem

o Electrical Subsystem

o Instrumentation Subsystem

o R. F. Subsystem

o Propulslon/Pyrotechnic Subsystem

o 1_ermal Control Subsystem

The BLDT vehicles are designed to be flown as supersonic, transonic

and free fall vehlcles in order to slmulate the various anticipated Mars

entry conditions for decelerator deployment.

A. Structural Subsystem

The vehicle structural configuration provlde¢ sn external envelope

which slmulstes the Viking Lander Capaule In order to quallfy the Decelera-

tor la the wake of s blunt body slniler to the actual Mars VLC. The

general confisurstion of the BLDT vehicle Is shown In Figures A-I through

A-7.

At the tnltistton of the BLDT vehicle design, the test bed was to

_ Jstch the Mars VLC CS and mmss properties st decelerator deploy conmnd.

Insofar ss practical. The requtrenen_ vms for the BLET vehicl_, to have a ,
&

__ weight of 1888 pounds v/th a Cg offset of 1.41 Inches in the -Z direction

at the tl_e of decelerator mortar fire coamJnd. The final uass properties
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for each vehicle, included in the individual reports, indicates the revi-

sions which were made to the mass properties subsequent to the BLDT

vehicle design.

The structural subsystem consisted of six (6) major components as

follows:

i. Rocket Motor Support Structure

The rocket motor support structure is a cylindrical component,

approximately 64 inches in diameter, which provides the ma_or vehicle

internal longitudinal support structure as well as providing the mot>r

mounts for the supersonic and transonic vehicles.

2. Instrument Beam

The instrument beam is a structural beam which was tied to the

forward surface of the RMSS and ran symmetrically along the Y, -y axis.

It also contained an aft facing pylon to mount the accelerometers and

rate gyros at or near the vehicle longitudinal Cg.

3. Base Cover

The base cover is a lightweight external shell providing an aft

configuration similar to the Mars VLC.

4. Decelerator Support Structure

The decelerator support structure is a three leg structure,
£

similar to the Mars VLC decelerator support structure, with a cyl_ndrl-

cal center section for mounting of the decelerato: c_nnister parallel to

the BLDT longitudinal centerline. The daceler_," ,upport str_,cture assem-

bled into the base cover to provide an intermediate assembly.

h_ .... J
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5. Aeroshell

The Aeroshell which is the forward surface of the vehicle pro-

vides a conical blunt aerodynamic surface approximately 11.5 feet in dia-

meter with a 140° included angle. The aeroshell provides a forward con-

figuration similar to the Mars VLC.

6. Load Bar Support Structure

The load bar support structure is a tubular structural member

which provides the interface with the Air Force Cambridge Research Labora-

tory (balloon) load bar as well as providing the correct hanging pitch

attitude.

• B. Electrical Subsystem

The electrical subsystem provides the flight power, cabling end

switchlng/sequenclng devices required to properly sequence and activate

the various functions. The electrical subsystem is shown schematically

in Figure A-8.

The vehicle is powered by five (5) silver zinc batteries as follows:

1. NAin Battery - 60 AH - MMCP/W PD94S0026

Provides power for telemetry, command system A and A/B heaters.

2. Transien,.t Battery - 16 AH Engle Pitcher Model 4332

Provlde_ power for timln8 correlator, C-band transponder and

command system B.

i

3. l_ro Battery A - 1.0 All - ESB Model 392

{

Provides power to all pyro A circuit ordnance devices and air-

borne programmer a.

b_
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4. Pyro Battery B - 1.0 AH - ESB Model 392

Provides power to all Pyro B circuit ordnance devices and air-

borne programme_ B.

5. Camera Battery - 1.0 AH - ESB Model 393 (Similar to model 392

except tapped st 9 cells and 18 cells).

Provide _13 volts power to onboard high speed cameras.

The electrical subsystem provides completely redundant airborne

sequencing programmers and completely redundant pyrotechnic circuits.

In addition, the electrical subsystem provides all power switching

relays, motor driven switches, power limiting resistors and airborne heaters.

C. Instrumentation Subsystem

The BLDT Instrumentation subsystem provides for the real time measure-

ment and conditioning of the parameters listed in Table A-I and provides

timing correlation for the real time measurements and airborne csmers. The

instrumentation subsystem utilizes a PAM/FM/FM configuration as shown sche-

matically in Figure A-9.

Additionally, the instrumentation subsystem provides the following

photographic coverage:

1. Aft Lookins Php_oaonics

Approximately 450 frames/second to record the decelerator

deployment sequence.

2. Aft LooklnKH£111ken

Sixty-four frames/second to record the decelerator deployment

sequence.

?
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3. Forward Looking Mllllken

Thlrty-two frames/second to record the Aeroshell separation

sequence and obtain a tlme/dlstance history.

D. R. F. Subsystem

The R. F. Subsystem consists of the TM transmitter, the C-Band trans-

ponder and the redundant command receiver/decoders with all of the required

antenna systems.

I. TM Transmitter

The tclemetry transmitter provides for the FM transmlsslon of the

composite FM data from the Instrumentation Subsystem mixer amplifier. The

transmitter provides 5 watts power output in the S-Band (2285.5 MHz)

range. The TM transmitter and antenna system is shown schematically in

Figure A-IO.

2. C-Band Tracking Transponder

The GFE tracking transponder was provided by White _nds Missile

Range and is compatible with tracking radar AN/FPS-16 utilised at WSMR.

The transponder and antenna system ts shown schematically in Figure k-lO.

3. Command Receiver/Decoder

The vehicle command system, including antenna, multicoupler,

receivers end decoders, is shown schematically in Figure A-ll.

The redundant receiver/decoders operate on an assigned frequency of

541 _ and provide a 28 volt nominal decoder output for command inputs

• with seven command tones selected from IRIG-103-61 channels I through 20.
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The system coding is such that triple tone ground commands result in

the following airborne functions:

Function Commands

Primary Backu_ Redundant

Release from load bar X X

Mortar Fire X X

Arm Ordnance Bus X X

Safe Oldnance Bus X X

Turn RF on X

Turn RF off X

Pointing, Clockwise X X

Pointing, Counterclockwise X X

E. Propulsion/Pyrotechnlc Subsystem

The propulslon/pyrotechnic subsystem consists of the solid rocket

motors required on the supersonic and transonic vehicles, the azimuth

pointing system required on the supersonic and transonic vehicles and the

pyrotechnic devices required on all three configurations.

The main propulsion assembly consists of a set of Rocketdyne RS-B-

535 solid propellant rocket motors each having the following characteristics:

Nominal 3 Q Variation

Total Impulse, ibf-sec Classified 0.6%

Burn Time Avg. Thrust, ibf Classified 1.9%

Nozzle Cant Angle, deg 35 0.I

Thrust Vector Alignment, deg** 0.2

Ignition Interval, msec 49 +27, -17

Burn Time, see Classified 1.87,

Loaded Weight, Ibm 461.2 0.25***

Burnout Weight, ibm 91.7 3.7****

E
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The supersonic configuration vehicles are provided with 4 of the

above motors with the transonic vehicle containing 2.

The spln/despin system is required to reduce trajectory dispersions

during booster burn and despin after burnout. Spin Motors having the

following characteristics are used:

Nominal* 3 Q Variation

Total Impulse, Ibf-sec 76.5 3.0?°

Burn Time Avg. Thrust, Ibf 86.2 8.0%

Ignition Interval, msec i0.0 +i0.0, -5.0

Burn Time, sec 0.8! +ii.07o

Loaded Weight, Ibm 1.2 0.i

Burnout Weight, Ibm 0.9 0.i

* Vacuum Conditions, 70°F

** Alignment with respect to nozzle geometric centerllne.
*** Actual weighing tolerance.

**** Variation from predicted value.

The supersonic and transonic vehicles utilized 6 each of the above motors

for spln-up and 4 each of the above for despin.

Other pyromechanlcal and pyrotechnic functions included in the

vehicle are:

Function Supersonic Transonic Subsonic

Aeroshell Sep. Nuts 3 3 3

Load Bar Release Nuts 0 0 3

Tension Rod Separator 1 I 0

Cable Cutters 2 2 0

Decelerator Mortar* i 1 1

* Part of Decelerator System
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Also included in the propulsion subsystem is an azimuth pointing

system which is used to orient the supersonic and transonic vehicle

azimuth at drop in order to assure impact within the White Sands

Missile RJnge in the event of a complete decelerator failure.

The pointing system is comprised of a gaseous nitrogen thruster system

located on the balloon load bar. The system provides paired clockwise or

counterclockwise rotational moments in response to ground commands. The

azimuth pointing system is shown schematically in Figure A-12.

F. Thermal Control Subsystem

The thermal control subsystem consists of those passive and active

components required to maintain vehicle components within the rec_ired

temperature levels. These components were generally:

i. Internal and external blankets,

2. Active heaters,

3. Base cover ablative material.
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APPENDIX B

^. Description of BLDT System Mission

I. Purpose of the System

The BLDT System is designed to subject the Viking Decelerator

System to qusllficatlon Test Requirements at simulated Mars Entry atmos-

pheric conditions.

2. System Requirements

The Viking Decelerator System earth atmospheric test conditions

which result from consideration of the variation in probable Mars atmos-

pheres are:

Supersonic Supersonic Transonic Subsonic
Case I Case 2 Case Case

Peak Load Hath No. 2.17 + 0.17 2.06 + 0.16 1.15 + 0.I0 0.46 + 0.03_ m m

Peak Load Dyn. Press. I0.09 _ 0.57 9.39 _ 0.55 4.52 _ 0.30 6.46 _ 0.80
(esP)

AngZe of Attack at _17 ._.17 _20 _17
HIP (Degrees)

The design of the BLDT test bed is constrained by the Viking Lander C_p_

sule design to the following:

o Vehicle weight at mortar fire - 1888 pounds.

o C& offset In minus Z direction - 1.41 inches.

o Vehicle external envelope similar to VLC (See Appendix A)

o Decelerator Temperature at mortar fire - 80°Y
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3. System Description

The BLDT System design which evolved from the above test require-

ments provides for a large volume, high lift balloon system capable of

floating the BLDT Vehicles at altltude3 from which the test conditions

can be achieved with reduced or no propulsion capability. The predicted

test altitudes and balloon lift capability involved in the system design

are:

Supersonic Supersonic Transonic Subsonic
Case 1 Case 2 Ca_e Case ---

* Balloon Float 119,000 119,000 120,500 92,000
Altitude (FT)

* Decelerator Mortar 147,800 148,600 137,500 89,300
Fire All. (FT)

BLDT Vehicle 3,550 3,550 2,800 2,050

Launch Weight (LBS)

The system concept provides for the launch of the balloon/flight

vehicle system from the Roswell Industrial Air Center, Roswell, New

Mexico with the system ascending to float altitude during the approxi-

mately I00 mile westward flight to the Whlge Sands Missile Range. Once

over the range, the flight vehicle is released from the balloon load

bar to complete its flight sequence.

For the powered flight tests, the vehlr le concept provides for spin

rotation of the vehicle prior to solld rocket motor boost to minimise

thrust dispersion effects. Followln& the boost phase, the vehicle is

deapun and allowed to coast to the correct dynmlc pressure condition.

For the subsonic case, the vehicle is released from the load bar and

allo_ed to free fall until the correct veloctt) is attained.

; * US$62 Pressure Altitude

lg73004297-1G5
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At the White Sands Missile Range, a ground computer system is pro-

grammed to receive tracking data which when integrated wlth preJtcted

meteorological parameters provides the intelligence for the computer to

issue a mortar fire command at the required test dynamic pressure for

the powered flights. For the non-powered flight, the computer issues a

timed mortar fire command following a delay for the correct velocity

test conditions to be attained. In both powered and non-powered flights

the vehicle incorporates an on-board proFrammer which provides a backup

mortar fire command. Figure B-I and B-2 depicted a typical powered and

non-powered flight.

The system design includes all of the handling, checkout and control

equipment necessary for pre]aunch checkout, flight control and recovery

of the system components.

4. Operations Description

A typical sequence flow of the mission operations from as_,Inbly

and checkout at Roswell, New Mexico through vehicle fligh_ and recovery

at WSMR, is shown in Figure B-3. Each of the sequence events is described

below:

a. BLDT Vehicle Assembl_ and Checkout - This phase of the

mission operation encompasses the assembly and checkout of the various

system components. The BLDT vehicle, while connected to 8round electrl-

c41 power and in partially assembled condition, is subjected to subsystem

and combined system testing in a close loop and open loop mode. The

vehicle is then assembled including airborne hatterles and subjected to

a full fliaht readiness test on airborne cower and in an open loop mode.
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While the flight vehicle is undergoing checkout and assembly, the balloon

system is also being partially assembled and subjected to flight readiness

testing. These checkout and assembly events were performed at the Roswell

Industrial Air Center.

Coincident with the checkout of the flight system, the ground control

system at the White Sands Missile Range is readied for the mission by

assuring that:

i) The flight TM data is routed to the correct terminal

data stations.

2) The ground command system is capable of transmitting

acceptable commands.

3) The communications links are correctly activated.

4) The command station personnel are prepared to accept

vehicle control.

b. BLDT Vehlcle/Balloon Intesration - When the prerequisite

flight vehicle balloon system and WSMR Control Center checkout are com-

pleted and the meteorological constraints at the launch site an_ _MR

(l.aunch winds, float winds, local weather, etc.) are satisfactory, _he

flight vehicle and balloon systems are moved from the checkout hanger

to the launch runway T'here system integration and final checkout is made.

The flight vehicle is connected to ground power and final subsystem

testing is completed to assure all subsystems are functioning. The

vehicle ordnance is electrically connected and the vehicle access panels

are installed. In this time period the launch balloon and float balloon

are layed-out and integrated with the flight v_hicle, the abort recovery

cargo chutes, the b_lloon winch and the launch crane.
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When the system integration is completed, the launch stand is removed

from the flight vehicle leaving the flight vehicle suspended from the

balloon load bar which in turn is suspended from the launch crane. Also,

the launch balloon is filled with a precisely metered quantity of helium.

c. STstem Launch - Following the integration of the flight

vehicle and balloon into the BLDT system, the system is ready for launch.

The launch process begins with a ground winching operation in which

the launch balloon is permitted to rise and which upon rising takes the

float balloon (uninflated) and the cargo abort chutes from a horizontal

attitude to a vertical attitude above the launch crane. Once the system

is in the vertical attitude, the winch cable is separated from the balloon

system through the use of an ordnance device. At this point, the two

balloons with the abort cargo chutes are floating above and tethered to

the launch crane wlth the balloon load bar and flight vehicle suspended

from the crane beneath the tethered balloon. At this point, the total

system for a powered flight extend from ground level to approximately

i000 feet abate ground level (800 feet for a non-powered flight).

With all of the preceedlng operations complete, it only remains to

release the flight system from the launch crane. To do this, the launch

crane is driven down wind at a velocity necessary to position the crane

approximately under the balloon at which point the crane release device

is actuated and the balloon floats free of the ground system taking with

it the balloon load bar and flight vehicle.

d. Ascent and Float Phase - During the ascent and float phase,

the balloon, system, floating freely, responds to the wind directions and

velocities encountered as it ascends to the design float altitude.

= Oenarally, once clear of low altitude wind influence, the balloons float

in a westerly direction intersecting the WSNR at about mid-range.
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As the system ascends, the helium which was loaded in the launch

balloon is forced down into the float balloon which slowly inflates the

float balloon and causes the system to ascend. This process continues

until the float balloon becomes fully inflated at which point no further

lift can be obtained. The balloon ascent to float altitude is rapid

enough to arrive at the float altitude prior to intersecting the WSMR.

The balloon ascent and direction is somewhat controllable through

the use of ballast dumping operations to control floating altitude and

rise rates in order to take advantage of winds at the upper levels.

The control of the balloon during the ascent and float phase is from

the Air Force Cambridge Research Laboratory control center at Hollaman

Air Force Base. Alamagordo, New Mexico.

When the ascending system passes through approximately 30 K feet,

the WSMR tracking radar, command networks and TM receiving stations are

able to acquire the flight vehicle and start checkout. Part of the float

checkout assures operation of the command nets by sending commands which

do not change vehicle configuration (i.e. safe ordnance circuits, turn

R.F. on, etc.) and verifying receipt of the commands through flight vehi-

cle TM data being received at the control center.

e. Vehicle Release from Load Bar - Once the BLDT system reaches

the proper float altitude and intersects the range, the vehicle ordnance

circuits are armed, the vehicle flight azimuth is attained using a cold

gas pointing system and the vehicle release from the load bar is commanded.

All of these functions occur as a result of ground commands issued by

the,flight vchlclc control crew at WSMR.

f. Vehicle Fli_ht - The vehicle flight events are a function

of the type of mission being flown. Table B-I presents a sequence of

%

¢
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events and event times for the Supersonic, Transonic and Subsonic missions.

All of the event times in Table B-I are times from release of the flight

vehicle from the balloon load bar with the exception of the ground mortar

fire command for the powered flights. This command is time variable

and is issued by the ground compater during the vehicle coast following

despin when the vehicle achieves the correct dynamic pressure.

For the powered fllghts following release of the vehicle from the

load bar, the vehicle is under control of the redundant airborne pro-

grammers with the exception of the issuance of the decelerator mortar

fire. The vehicle functions provide a flight profile as shown in Figures

B-I and B-2.

£_iring the vehicle powered flights, the vehicle is tracked by the

WSMR tracking devices to provide the ground computer with the intelle-

gence for issuing the mortar fire command. For all flights, tracking

devices provide data for post flight analysis and to support vehicle

recovery operations.

For the non-powered, free fall mission, the vehicle functions are

commanded by the on-board redundant programmers except for the mortar fire

which is issued as a timed output from the ground computer.

g. R_.ecoveryOperations - During this phase of the mission, all

of the system components are located and moved to WSMR facilities for post

flight inspection. Also during this phase the various system cameras

are recovered and the film processed for post flight analysis.

J

e
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APPENDIX C

GAC POST-TEST INSPECTION

Excerpts from GAC Report No. RSE-20926-18

1973004297-175



C-2

GAC POST-TEST INSPECTION

Viking decelerator system S/N 16 was flown as BLDT 3 (AV-4). This

system incorporated S/N 17 parachute. The following constitutes the post-

flight inspection report.

Chute Canopy

The damage chart is presented in Figure C-I. As noted on the chart,

several small black smudges are in evidence on various gores in the band.

The smudges are in the mid-gore region. There is no evidence of excessive

heat associated with the smudges.

Gore 9, panel D of the disk has eight sv;a]lholes (See Figure C-2).

The edges of the holes are hardened as if excessive heat were encountered.

In two cases, there is cloth fused to itself n,._r the holes.

Gore 33, panel E of the band, exhibits tw_ holes (See Figure C-3).

The larger hole is approximately 2-1/2" by I". There appears to be some

cloth missing from this hole. Also, there is a smearable, black residue

on the edge of the hole.

Gore 48, panel E of the band, has four small holes similar in nature to

goce 9.

Suspension Lines - No damage.

Deployment BaR

There is one small cut, about 1/4 inch, locsted approximately 7 inches

[. from the bottom edge of the bag. The cut is near an imprint of the swivel

: bolt.

; _ae bag is blackened on the outside surface.

i
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Buffer

The quartz facing of the buffet is torn at each of the tie locations.

One of the tears is completely through the buffer and extends approximately

3 inches.

The facing in the center of the buffer is torn at the points where the

filler block is attached.

Filler Block - The filler block is missing.

Bridle Legs

The bridle legs are undamaged. Most of the basting stiches are broken.

The bridle legs are blackened.

Cover Thermal Protection

Several random ruptures of the Min-K are in evidence. The Min-K is

blackened near the mortar opening.

Bridle Thermal Protection

Several random ruptures of the Min-K are in evidence. The Min-K is

blackened near the mortar opening,

Mortar

The inside of the mortar tube is blackened. The straps at the top of

the mortar are all intact. The choker cord is fused to one of the straps.

There is no apparent damage to the mortar.

Sabot

The sabct is blackened on the outer surface. The Teflon and stalntess

; steel discs are still attached. The sabot retention are blackened but intact,
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} 43.0"

APPENDIX D \ /

PARACHUTE DIMENSIONS

f;; _"._"
%_/ •

_ t
30.3 D-DISK B

E-BAND 25.5"
F-BAND

BETWEEN RADIAL SHOWN

AND NEXT HIGHE _,NO. C

6' 4.4"

G

90' 2.0"

H
I!

90.5
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PRE-FLIGHT AV-4

RADIAL A (DISC) B(GAP) C(BAND) D(DISC) E (BAND) F(BAND) G(SUSP)
NO FT- INCHES INCHES INCHES INCHES INCHES INCHES FT- INCHES

i 17-33/4 255/16 755/8 301/8 301/8 297/8 90-I

2 31/2 5/16 9/16 3/8 5/16 303/8 I/4

3 33/8 5/16 3/8 3/16 1/2 3/8 3/4

4 31/4 5/16 I/4 5/16 1/8 5/16 7/8

5 31/2 1/4 5/16 1/8 5/16 3/8 3/4

6 31/2 i/4 3/8 7/16 1/4 5/16 3/4

7 31/4 1/4 3/8 1/4 3/8 1/4 3/4

8 31/8 1/4 1/4 3/8 1/2 9/16 11/4

9 31/8 5/16 5/16 1/8 3/16 1/4 I/2

i0 31/8 5/16 3/8 3/16 3/8 7/16 11/2

Ii 33/16 1/4 1/4 7/16 I./4 7/8 1/2

12 33/8 5/16 1/2 3/16 9/16 I/8 i

13 315/i 6 1/4 ' 3/4 3/16 1/8 5/16 11/4

14 33/8 3/8 5/8 1/8 5/16 9/16 I

15 35/8 5/16 7/16 7/16 3/8 3/16 3/4

16 35/8 5/16 7/16 5/16 3/8 9/16 3/4

17 37/8 5/16 7/16 1/4 5/16 1/4 7/8

18 33/4 5/16 5/8 0 3/8 3/16 11/8

19 37/8 5/16 7/16 -_/8 1/4 1/2 11/8

20 3118 1/4 5/_ 6 3/8 7/16 1/4 1

21 31/2 5/16 3/8 1/4 5/16 9/16 1

22 39116 1/4 1/4 3/16 1/4 29718 11/4

23 37/8 5/16 114 3/16 5/16 I/2 11/4

24 33/4 5/16 3/8 I/4 I/2 1/8 7/8
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PRE-FLIGHT AV-4 (CONTINUED)

RADIAL A (DISC) B(GAP) C(BAND) D(DISC) E(BAND) F(BAND) G(SUSP)
NO FT- INCHES INCHES INCHES INCHES INCHES INCHES FT-INCHES

25 17-4 251/4 755/16 301/4 303/8 305/8 90-3/4

26 35/8 1/4 3/8 9/16 5/16 5/16 11/8

27 33/4 1/4 3/8 I/4 1/4 1/4 3/4

28 31/2 3/8 5/16 3/16 5/16 5/16 11/2

29 33/4 1/4 7/16 1/4 9/16 3/8 I

30 31/2 1/4 3/8 5/16 1/16 5/16 II/4 -

31 31/2 5/16 5/16 3/8 3/4 1/4 11/4

32 31/4 3/8 3/8 5/16 1/8 3/8 11/4

33 35/16 I/4 5/16 3/16 3/8 3/8 11/4

34 33/8 3/8 1/2 3/16 5/16 1/8 11/4

35 31/2 5/16 3/16 5/8 3/8 5/8 11/8

36 31/4 5/16 1/4 1/16 5/16 1/4 1

37 33/8 5/16 3/8 3/8 3/4 1/2 11/4

38 35/8 5/16 3/8 0 3/8 1/4 13/8

39 33/4 5/Id 3/8 9/16 7/16 1/8 II/4

40 31/2 3/8 3/16 l p. 5/16 3/8 1

41 35/8 5/16 5/16 5/16 1/8 I/2 11/8

42 35/8 5/16 3/8 5/16 7/16 3/16 11/4

43 31/4 1/4 5/16 1/8 1/4 3/8 11/4

44 31/2 I/4 1/4 5/16 9/16 I/4 11/4

45 31/4 1/4 3/8 II16 114 I/2 II18

46 3 1/4 318 3/6 318 1/4 11/4

47 31/8 1/4 I/8 3/8 7/16 5/16 11/8

48 3 1/4 1/4 1/16 1/2 5/8 11/2
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PRE-FLIGHT AV-4 (CONCLUDED)

m

VENT DIAMETER

BRIDLE LEG H - INCHES RADIAL J - INCHES

S/N 52 901/2 1/25 421/2

S/N 53 903/4 7/31 421/2

S/N 54 905/8 13/37 42

19/43 421/4
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POST-TEST AV-4
t

RADIAL A(DISC) B(GAP) C(BAND) D(DISC) E(BAND) F(BAND) G(SUSP)
NO FT-I_CHES INCHES INCHES INCHES INCHES INCHES FT-INCHES

1 17-5 251/4 761/2 30-0 30-0 301/8 91-93/4

2 17-51/2 253/8 763/4 1/4 1/4 1/2 103/4

3 17-51/4 251/4 763/4 3/16 3/8 5/8 92-0

4 17-5 251/4 761/2 1/4 1/16 1/2 21/2

5 17-51/4 251/4 761/4 1/16 3/8 1/2 51/4

6 17-51/2 251/4 761/2 3/8 3/16 1/2 73/8

7 17-51/2 253/8 761/2 1/4 1/4 3/8 5

8 17-51/2 251/4 761/2 5/16 7/16 1/2 41/4

9 17-41/2 251/4 763/8 1/8 1/8 1/4 11/4

I0 17-43/4 251/4 761/4 1/8 5/16 3/8 11/4

Ii 17-5 253/8 761/4 3/8 1/4 1/2 92-0

12 17-51/4 251/4 761/2 1/8 9/16 0 I

13 17-51/2 253/8 761/2 1/8 1/16 3/16 91-101/4

14 17-5 251/4 761/2 1/8 5/16 7/16 I0

15 17-51/4 251/4 761/2 1/4 1/4 1/8 93/4

16 17-41/2 251/4 761/4 1/4 7/16 3/8 91/4

17 17-53/4 253/8 761/2 1/4 5/16 3/16 73/4

18 17-51/2 251/4 763/4 297/8 5/16 1/16 71/2

19 17-5 251/4 763/8 305/16 3/16 3/8 61/4

20 17-41/2 251/4 761/4 1/4 3/8 1/8 61/2

21 17-41/2 253/8 761/8 I/4 1/4 7/16 53/4

22 17-41/2 251/4 76-0 1/8 1/4 293/4 53/4

23 17-5 251/4 76-0 3/16 5/16 303/8 53/4

24 17-5 251/4 76-0 I/4 I/2 1/16 5

i
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POST-TEST AV-_ (CONTINUED)

RADIAL A(DISC) B(GAP) C(BAND) D(DISC) E(BAND) F(BAND) G(SUSP)
NO FT-INCHES INCHES INCHES INCHES INCHES INCHES FT-INCHES

25 17-5 251/4 76-0 30-3/16 301/2 301/2 91-3

26 17-51/4 251/4 761/2 5/8 5/16 1/4 33/4

27 17-41/2 251/4 761/4 3/16 1/4 3/16 5

28 17-43/8 253/8 76-0 3/16 5/16 1/4 81/2

29 17-51/4 251/8 763/8 7/8 9/16 3/8 7

30 17-51/2 251/4 761/2 1/4 1/8 1/4 6

31 17-41/2 251/4 761/4 7/16 5/8 3/16 5

32 17-51/4 253/8 761/2 1/4 1/8 3/8 31/2

33 17-41/4 251/4 761/4 3/16 3/8 3/8 21/4

34 17-31/2 251/4 76-0 1/8 1/4 1/8 I

35 17-43/4 251/4 761/4 1/2 3/8 5/8 90-i13/4

36 17-43/4 253/8 761/4 0 3/8 3/16 91-]/2

37 17-5 251"/4 761/4 3/8 5/8 1/2 11/4

_8 17-5 251/4 761/4 0 3/8 1/4 31/4

39 17-5 253/8 761/4 1/2 3/8 1/8 4

40 17-41/2 251/4 761/8 1/8 "t8 3/8 53/4

41 17-51/4 253/8 763/8 1/4 1/_ 7/16 53/4

42 17-53/8 251/4 763/8 1/4 3/8 1/8 7

43 17-45/8 25!/4 761/4 1/4 1/8 3/8 7

44 17-43/4 251/4 761/4 1/4 1/2 1/4 71/2

45 17-41/2 251/4 761/2 1/8 3/16 1/2 81/4

46 17-41/2 251/4 76t/2 3/8 1/4 1/4

47 17-41/2 251/4 761/4 3/8 7/16 1/2 6

48 17-43/4 251/4 761/4 1/16 7/16 5/8 71/2
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POST-TEST AV-4 (CONCLUDED)

VENT DIAMETER

BRIDLE LEG H - INCHES RADIAL J - INCHES

S/N 46 91 1/25 421/2

S/N 47 91L/8 7/31 421/2

S/N 48 91 13/37 421/2

19/43 421/2
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APPENDIX E

BLDT COMPUTER SOFTWARE
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I. PURPOSE

The control of the Balloon Launch Decelerator Test Flights at WSMR

was aided through compute_ predictions and operations. It was the res-

ponsibility of WSMR (RTDS) personnel to develop computer software neces-

sary to fulfill operational requirements imposed by _ and constraints

imposed by Range Safety. The purpose of this appendix is to discuss the

real time computer software needed at WSMR for the BLDT mission and, in

particular, describe the software furnished by MMC. The major software

functions were to:

Predict impact of flight/payload components

Issue a precision, real time decelerator mortar fire command

Generate real time flight information

In support of the above requirements, the following computer programs

were developed by MMC for WSMR implementation:

Vehicle Flight Azimuth Program

Vehicle Impact Prediction Program

Decelerator Mortar Fire Command Program

4
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II. VEHICLE FLIGHT AZIMUTH PROGRAM

A. Program Requirements

For the BLDT powered flights, it was a Range Safety requirement that

the vehicle drop azimuth be such that the vehicle, or any separated com-

ponents, impact within prescribed areas of the range under all flight and

failure modes including failure of the qualification decelerator to deploy.

Since the failure of the decelerator to deploy results in trajectories

which are greater than the width of the White Sands Missile Range, it was

necessary to control vehicle flight azimuth for a period of time prior to

and at release from the balloon load bar in order to assure range impact

for system components and provide Rav_e Safety with real tlme vehicle and

separated component impact predlction_

In order to comply with the above azimuth control r_quirement, the

Vehicle Flight Azimuth Program was generated. This program processed air-

borne telemetry data from a set of on-board magnetometers to provide con-

tinuous control center displays of the vehicle heading and rotational

rates as well as to provide input to the Vehlcte Impact Prediction Program.

The real time displays of the vehicle heading and rotational rates, coupled

with an airborne gas thruster imp_'_e system, provided the necessary means

for vehicle azimuth control.

' Program Implementation

The azimuth progrrm utilizes the telemetry output of an airborne

magnetic sensing system consisting of two magnetic field sensors oriented

900 apart and mounted so as to sense ouly the horizontal component of the
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earth's magnetic field. When the venicle, while still connected to the

balloon load bar, is rotated through a 360 ° a_c, the output frc_, the

magnetometers provides sinusoidal cu_es with a 90° phase shift as shown

on Figure E-1. These data are sufficient to establish the vehicle

heading.

The equations for computing the vehicle heading (0) from the TH

magnetometer data is:

(i) 0 = tan"I _ _ _ _ 0 1 where:

is the heading from true north

X is the voltage from Probe l

Y is th_ voltage from Probe 2

B1 is the voltage reading of Probe 1 _hen perpendicular to
the magnetic field.

B2 is the vcltage reading of Probe 2 when perpendicular to
the magnetic field,

_I is a constant which combines the corrections for installa-
tion alignment and the difference between true and magnetic
north.

The above equation was derlvea _:om the foilowlng relationship:

(2) x = z cos (#+#i) +_I

(3) Y = R sin (#+ _l) �_2where

R represents the horizontal component of mabn_t_ field
strength whlch varies slightly with altlt,_

Each vehicle was rotated over a compass rose where the magnetometer

data were recorded at Incra_ntsl headX.18s from true north to provide

cullbration data for BI, B2 and 01. '_e actual c_lib_atlon values ware

_ obtained by a I agt squrre fltti_K of equation (2) and (3) above.
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Using the above calibration value_ and the TM values for X end Yj

th_ vehic" heading can be computed asin_ equations (I), (2), amd (3).

Equation (1) which uses input from both probes was normally used but in

the event of a probe failure, the compuLcr would switch to a mode which

derived heading from a single probe using equations (2) or (3) depending

upon which probe failed. Tests were included in the program to continuously

validate each probe output by es_abllahlng acceptable minimum and maximum

voltage limits. The field strenBth (R) was continuously calibrated to
m

reflect its change with altitude using a gain filter to _uppress no_se,

To suppress inherent data noise and provide azimuth rate informa-

tion, the TM data were edited and filtered with a standard, sllding 19

point, cubic polynominal, leading edge, least squares filter T_,eazimuth

rate was obtained from the polynominal slope at the l_ch point which lags

real time by approximately 0.5 second. T_e azimuth rate c'atawas then

addltional_y smoothed by a 30 point summer filter which increased the lag

to approximately 2 seconds.

In the event of a single probe failure, equations _2) and (3)

encounter difficulty in det_ving the azimuth qtJdrant. To circumvent

this difficulty, the polynominal filter continuously extrapolate_ to the

20th point to predict the subsequent value o_ azimuth. Thi_ predicted

value is used to determine the q_adrant while the remalni_t3 pzobe data

are u_ed to compute the heading. For _ condition of temporary TMdrop-

out, the azlmur_, is obtained directly from the filtered predictib.

The program listing is inclJded in Table _-1. This computer pro6ram

provided the intellegence to drive t'_o (2) _Y plotters (_ehicle heading

and vehicle a_i_th rate) plu_ vehicle heading _nd aa£muth rat_ _igltal
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displays. It was these displays which were monitored while manually sending

clockwise and/or counter clockwise commands to change or control the vehicle

heading during the drop operations.

i •
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AZO" l'l, * (,4+ 13. *C )/U

IN='4,'IP)(IIol,_J)
, IN.I _i+,i

SAZD"._A4_U-Z( I 111('&ZO
Zl l+4l=_Z U
AZUs3AZLI/Ibl,

RETU+_I

16 AZZ m A L
^"AZ

NCTUR,N

E ,',1O -.

TABLB E-I (COHTDIUED) AZIMUTH PROGRAM LISTING

++_

,-+
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III. IMPACT PREDICTION PROGRAM

A. Program Requirement

As previously discussed in IIA, it is a requirement to provide impact

Information to Range Safety in order to select a drop point and corresponding

flight azimuth. Additionally, the Impact data are used to select the best

impact area to expedite recovery of the spent hardware and to direct the

recovery crew to the predicted impact area.

The program is required to operate in two modes as follows:

I. A static mode in which drop parameters are selected and Impact

analysis are performed using range Intersect predictions.

2. A dynamic mode In which real time drop parameters are used and

real time impact predlctlon_ are derived.

The mode of operation is manually selected and requires only • change

in the source of input data.

B. ProRram Implementation

The Impact Prediction Program Is based upon a nominal trajectory

(perturbed by current wind conditions), latitude and longitude of drop

and vehicle heading at drop.

The software reflects two modes of flisht; accelerated flight (powered

flight and decelerator transients); and equilibrium descent, where the

aerodynamic drag is nearly equal to the system weight and the rate of

descent is a direct function of the atmospheric density. The point of

impact is obtained by first computin8 the wind effect to the nominal, zero

wind, accelerated fllsht trajectory and then addin8 the wind drift effect

of the equilibrium descent. _
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: I. Accelerated Fli_ht Mode

The vehicle position, at the completion of accelerated flight,

is computed by adding wind corrections to a nominal zero wind trajectory

which is represented by a nominal range (R) for each vehicle configuration

and a nominal azimuth shift (A_) which occurs because of vehicle spin.

: The time equivalents of the nominal trajectory and wind velocities are

; tabulated as functions of altitude at Intervals of 5000 feet. The poqi-

; tion c_rrections due to wind are computed by multiplying the wind velocity

(Wi) by the time (ti) required to transverse each of the 5000 feet inter-

vals of altitude,

The position (Xa,Ya) at the completion of accelerated flight is given

by the equations: N

(4) Xa = XD + R sin (Az +d_) + _ ti (Wxl)

N

(5) Ya = YD + R cos (AZ +_) + _ ti (Wyi)
i=1

where: _ is the drop heading

XD,Y D is the range drop position.

The position location (Xa,Ya) is the starting location for the equilibril,m

descent portion of the computation which follows.

2. Equilibrium Descent

During equilibrium descent, the vehicle weight counterbalances

aerodynamic drag as shown in the relationship:
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(6) Weight = Drag

wt = q CnA
u

_/dh \ 2

= 1/2 p_-_)

where: q is dynamic pressure

CD is aerodynamic drag coefficient

p is atmospheric density

dh
-- is rate of descent
dt

It is noted that the atmospheric density (p) is considered constant over

each altitude interval.

Rearranging equation (6), the time spent during any altitude interval

can be computed as:
1/2

i (7) At i ffi\_-_ • 5000

The summation of the displacements obtained by multiplying the _t by the

: corresponding wind velocity for each 5000 feet altitude interval gives the

Increw_,t of vehicle displacement (Xb,Yb) for the equilibrium descent por-

'_ tlon c the impact prediction. This summation is represented by:

N

i (8) Xb= _ _t i %i)
i=i

N

(9) ¥b = _ Ati (Wyi)
i-I

The displacements given by equations (8) and (9) are added to the posi-

tion computed by the accelerated flisht operatlonm to obtain the impact

position (Xp,Yp). The equatlona for this operation are:

(10) Xp-Xa+x b

(ll) ¥p = Ya + Yb
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The impact prediction is computed separately for each of the possible

flight conditions which are:

o Powered flight followed by payload decelerated descent to

impact.

o Powered flight followed by aeroshell descent to impact.

o Powered flight without decelerator deployment (abort mode).

The impact prediction program drove an XY plotted which displayed impact

locations of the above flight articles superimposed on a map of the White

Sands Missile Range. During the dynamic mode of operation, where the

heading angle was fed directly to the impact prediction program from the

azimuth program, the impact prediction was displayed continuously for the

abort mode which was the most critical case due to its extended trajectory.

This continuous impact display provided assurance to Range Safety that the

overall azimuth control operation was adequate and stable and since the

display was for the worst case (abort), Range Safety was assured that a11

flight artlcles would impact within an acceptable area.
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IV. DECELERATOR MORTAR FIRE COI_/4ANDPROGRAM

A. Program Requirement

The airborne command receiver was used to allow the ground computer

to fire the decelerator mortar at the proper flight conditions. This real

time command system minimized the effect of vehicle dispersions on the

parachute qualification dynamic pressure test condition. The vehicle pro-

grammers wet_e set to open a time window for this signal to prevent inadver-

tent mortar fire prior to despin and also to backup the ground command in

the event this command link failed.

The ground computer compared real time information from all available

radar sites and automatically selected the best radar tracking information.

The velocity and altitude data were then used with the current atmospheric

density and winds to compute the dynamic pressure. The dynamic pressure

data were then compared to the nominal predictions and the flight devia-

tion converted to an effective time 'shift in the mortar fire time for the

powered flights. The subsonic flight mission used a fixed time from inlt-

tiation of drop, due to the predictable nature of the gravitational accelera-

I tion.

B. Program Implementation

The generation of the ground mortar fire command is based on flight

deviations from a reference trajectory. The radar data subsequent to drop

is used in conjunction with current atmospheric density and wind velocity

data to compute the dynamic pressure and ascent rate. The deviations from

the reference trajectory are used with sensitivity coefficients to predict

the time increment from nominal when the desired dynamic pressure will
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probably occur. The predicted mortar flre time was continuously calculated

after drop and filtered such that the latest information was weighted most

heavily. The equation for predicting the mortar fire time is:

(12) T = TN + SQ \_-_/ + SH (H-HN) +_t

where: SQ, SH, QN' HN are tlme varying functions.

The various elements are individually discussed below.

i. Nominal Tralectory Parameters (QN' HN)

The reference trajectory was determined from the best estimate

of the "as built" vehicle performance and the US Standard 1962 atmosphere.

2. Sensitivity Coefficients (SQ, SH)

The correlation between the deviations of randomly dispersed tra-

Jectories from the nominal trajectory and the deviation in the time from

nominal at which these trajectories attain the desired dynamic pressure was

used to generate the sensitivity coefficients. The two parameters, dynamic

pressure _ i ascent rate, were evaluated separately. The dynamic pressure

sensitivity coefficient (SQ) is expressed as a percent variation and to

avoid posslble division by zero, early in fllght when Q is small, it was

incremented by a constant DQ.

3. Radar Track Data (Q,H)

The radar track furnished the position and rate of chanse of posi-

tlon data whlch when coupled with current atmospheric data defined dynamic
@

pressure (Q). Ascent rate (R) was obtained directly from the radar data.
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4. Filter Constants

A dual filter was used to suppress the effect of random noises on

the radar tracking data.

Variation in mortar fire time comes primarily from erratic velocity

derived from radar position data, however, systematic variations in velo-

city are averaged and used to bias the mortar fire late such that a lower

dynamic pressure is obtained. The primary filter was given a shorter time

constant to respond to the latest data on dynamic pressure and still give

a margin based on the overall variability in the data. Thls filter used a

5 second time constant on the variability of the mortar fire time with a

2 second time constant when the predicted mortar fire is shifting earlier

and a 1 second time constant when shifting late. This filter is initialized

by setting the initial value of mortar fire time equal to T MAX (dispersed

backup programmer setting). This bias is reduced by a .5 second time con-

stant as soon as valid data becomes available.

5. Nominal Mortar Fire Time (TN)

Although a 6.0Z (2O) dispersion on mortar fire dynamic pressure

was assumed, this value represents in part radar data uncertainties which

are to some degree detected by the mortar fire program and used to blas the

mortar fire time late. The nominal time is therefore selected based on the

expected meteorological data uncertainty only. It is made up "of two parts,

density and winds. The density uncertainty is expected to be + 3.5% (30)

and the winds 1.53% (30). The resultant 20 dynamic pressure bias below

the 30_ overload dynamic pressure ta 2.$%.

/_
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5. Time Delay (_ T)

The transmission time delay from grour_ to air _,=iects the mortar

fire program in two ways. First, the mortar fire program u_es a reference

drop time which would De earlier than actual drop tlmc due to the combined

transmission and pyro delay. The second is the time delay between the

commanding of mort fire on the ground and the flight occurrence of mortar

fire. To some degree, these delays are compensatory except that the radar

data does not have this delay and therefore the actual trajectory and the

reference nominal trajectory will not be tlme correlated. For this reason,

care was taken to make the mortar fire program insensitive to time delays.

A mortar fire transmission time delay of .03 seconds was included.

In the event the predicted mortar fire time is outside an acceptable

mortar fire window, the data is assumed to be bad and the current mortar

fire time estimate is slowly moved later. This rate of change was

evaluated such that if acceptable data is never obtained, the mortar fire

time vould revert to the airborne backup programmer time.

The Fortran source programs for computing mortar fire commnd time are

given in Table E-2.
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FUNCTION FIREITo_tHD!

C ,$**$e•t*_,***_*o*te**eteoo**,ee,s,e,i**ott,,,#,o****$s,,o**o1,,,te_et
,"_ C $ $

C • MORTAR FIRE REAL. TI__R CALCUL_TION PROGRAM $
C • _ •

C $$$$*$$ $$•_$$$ $$$$11•_$$$$•_'S $*$a$ $$ $$ *$ $$$ $$.._S $$$ e,$$e. $_r$1, tee$ $$

C T = TIME F_OM DROP -,'SECO,L:DS
C Q = DYNAMIC PRESSURE ,PSF -
C HO: VERTICAL VELOCITY,FPS I_OSITIVE UrWARD)
C TDEL:SYSTE4 TIME DEL-.aY.. . -
C- SIGT=INITIaL VALUE O]r_NCZSE

C $IGO=9 BIAS TC _REVE._II-DIVZSION BY O.O
C TMIN=EARL-IE ST .MORTaR F.IR( T]ME '-
C TMAXzLATEST MORTAR FIRE TIRE

C TNOM:TIME NOMINAL" TRAJECTORY ACHIEVES DESIRED MORTAR FIRE O

C DTBD:OUT OF RANGE DATA BIAS ON TIME

COMMON /DATA/D 1170)
E_UIVALENCE IDI1GI_eG1 ),IDI1G2)IG2 ) tlDllg3},G3 )

le ID 1184 ) oDTBD ) I ID 1165 ) ITDEL) t ID( leg ! wSIGT ) PID 1167 ) ,_IG9 )
2eIDI16B)eT4IN)IIDILGgI,TMAX)oIDIITC),TNOH)

DAIJi G1 tCZ eG3 tDTSD tTDELtSIGT,SZC_,TMINITMAXITNCM/

e 0.02,2.O, O.OS', C,012 ,O.OO, 2.00, 2.CO,33.5e3a.5,3G,S/
ZFIT.GT.I.O! GO TC Z
SDT-SIGT
TMFL-TNOM'oSD T
T MFC-- TMFL

I FIRE=TMFC-TDEL
RE TUR N

Z IFIT.GT.HC.! GO TO "1
CALL TABNO_,I T t HNt QN IHSt ]S )
THF-1NOM_HS • IHO-HN)erJS$ I Q-_N )/I OeSIGO )
TFITMF,GT.THAX) GO TO 3
IFITHF,GT,,TM, IN) GO TO 4

3 TMF= T MFC'_'DTBD
60 TO 5

is DT=ABSITMF-TMFI.)-SDT

SDT=SDT*GZeD T
TMFL=TMF
TMF:TMF_SD T

S ZF(TMF,,OT.T_AX) THF=TM_X
DT:IHF-THFC

_ IFIOT.GT.O,,9 ) OT=GZeDT
TMFC:THFC'_G3eD T
60 TO 1

* END

/

TA]_LE !-2 HOI_T_J_FI_J_ C_ LISTING

|

I
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SUBRO UT _:'t_E TA3NOHiT eHN._N. HS .'3S|
C ••*••*•*" **•*******•**•**********•*•*****•**•**•*******•****•*****

f_ C * *

C * NOM]NAL FPZGHT VI_RTICAL-VELOCITY IHNItDT/3V IHS! t •
C * DYNAMIC PRE';SU_E IQNItDT/DQ I_S) TABLE INTERPOLATION •
C * - •

COMNON IDATA/D!17DI -
DIMI_NSION HNI(WO) tONZ(qOltHS11qOl oOS1f_G)

lo HN2 139 I ,QN.ZI, 39-1 ,HSLL-(39 I, 052¢ 39 I
EQUIVALENCE (D( 21"o0..'.'.'.'_.LfZ)_"JN2{1I)oID{ q2)pHNll2)_HN2(1)I

1: ID 182 ! t g,.._l [2 ! m.OS2{ 11 l, (De 1221 tHSlt2! tHS21 1l I
IT-1
DT:O.D

IFII.LT.I.D) 50 T'O I
II:39

DT-Z.O

IF(T.GE.qO.! GO TO 1
IT=T
DT:II
DT--T-OT

I HN--HNZ {Z T )sDT* (Ht_24ZT I-HNll IT I !
QN=gNI(IT)  �”�„�(ON2(ZT)-_N1 (£T I I
H$,H$1(I T)*DI* IH$2(I T I-HSI(IT ) ) •
QS-QSI(IT) _DT • ( _S2(ZT)-_SI(IT) )
RETURN
END

P

!

TABLE E-/ (CONTINUID)

o

o

• i
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